Segundo a Organização Mundial de Saúde, a hipertensão arterial é responsável por uma crise global de saúde pública, sendo as doenças cardiovasculares implicadas em aproximadamente 17 milhões de mortes/ano, das quais, 9,4 milhões ocasionadas por complicações provocadas pela hipertensão, como edema pulmonar. Quanto ao arsenal terapêutico disponível, a furosemida, potente diurético de alça, é amplamente utilizada em situações de controle e emergência relacionadas à hipertensão e ao edema pulmonar cardiogênico. Apesar do elevado índice de sua prescrição, esse fármaco pertence à classe IV do Sistema de Classificação Biofarmacêutica (SCB), apresentando absorções intestinais erráticas e variáveis. Tais características representam desafio para o desenvolvimento de formas farmacêuticas orais. Assim, adoção de tecnologias inovadoras associadas à via de administração pulmonar pode permitir abordagem terapêutica alternativa, com elevado potencial de aplicação. Entre as tecnologias inovadoras, a obtenção de nanocristais de fármacos classes II e IV tem sido promissora. Nanocristais podem exibir desempenho in vivo superior quando comparados aos seus homólogos, na forma micronizada. Portanto, estratégias que permitam o desenvolvimento de medicamentos contendo furosemida, com maior eficácia e segurança, são de fundamental importância. Nesse sentido, a aplicação de tecnologia in silico, com propriedade preditiva, contribui para a racionalização de ensaios na pesquisa e no desenvolvimento de novas formas farmacêuticas. Objetivou-se, desse modo, a preparação e a caracterização físico-química de nanocristais de furosemida e sua avaliação in silico na absorção oral e pulmonar empregando ferramenta computacional. Os nanocristais foram obtidos por moagem à alta energia, utilizando movimentos simultâneos de revolução/rotação. A determinação da distribuição do tamanho e a morfologia foram realizadas por difração de raios laser e microscopia eletrônica de varredura, respectivamente. As possíveis interações e/ou alterações do estado cristalino do fármaco foram investigadas por calorimetria exploratória diferencial, termogravimetria diferencial, difração de raio X e espectroscopia Raman de baixo deslocamento. Quanto à solubilidade do nanocristal, foram realizados ensaios para a determinação do aumento na solubilidade de equilíbrio e da velocidade dissolução, utilizando os métodos shake flask e velocidade de dissolução intrínseca (VDI), respectivamente. A moagem à alta energia permitiu a obtenção de nanocristais com tamanho médio trinta vezes menor (231nm) do que o tamanho inicial, na escala micrométrica (7,1 µm). Os nanocristais apresentaram estabilidade térmica. Não foram observadas interações entre os excipientes e os nanocristais, que, entretanto, exibiram estrutura cristalina menos definida, o que indica parcial amorfização do nanocristal. A solubilidade de saturação dos nanocristais aumentou aproximadamente três vezes; como consequência, houve aumento na VDI em 2,2 vezes, 1,8 vezes e 3,8 vezes, quando comparado à VDI da furosemida micronizada em meio SGF, tampão 4,5 e SIF, respectivamente. Quanto às avaliações in silico dos nanocristais, sua absorção oral revelou moderada alteração no perfil farmacocinético. Quando foi utilizada a via de administração pulmonar, os nanocristais apresentaram maior desempenho quando comparada a via de administração oral; destacando-se o aumento na Fa% e na Cmáx e a acentuada diminuição no Tmáx. Em conclusão, a plataforma tecnológica obtida tem potencial aplicação no desenvolvimento de formas farmacêuticas inovadoras para administração pulmonar de furosemida. / According to the World Health Organization, hypertension is responsible for global public health crisis, being the cardiovascular diseases involved in approximately 17 million deaths a year, of these, 9.4 million occasioned by hypertension complications such as pulmonary edema. Regarding therapeutic arsenal available, Furosemide is a potent loop diuretic widely used in control and emergency situations related to hypertension and cardiogenic pulmonary edema. Despite the high level of prescribing, this drug belongs a class IV drug, according to Biopharmaceutics Classification System (BCS), exposing erratic and variable intestinal absorption. These characteristics represent a challenge for the development of oral dosage forms. Thus, adoption of innovative technologies associated with pulmonary route of administration may allow an alternative therapeutic approach, with high potential for application. Among the new technologies, those for obtaining nanocrystals of classes II and IV drugs have been a promising approach. Nanocrystals can exhibit in vivo higher performance when compared to their counterparts in micronized form. Therefore, strategies to develop medicines containing Furosemide, with greater efficacy and safety, are of critical importance. In this sense, the application of technology in silico, with predictive property, contributes to the rationalization of testing in research and development of new dosage forms. The objectives, as a result, were the preparation and the physicochemical characterization of Furosemide nanocrystals, and it\'s in silico evaluation on oral and pulmonary absorption using a computational tool. The nanocrystals were obtained using a high-energy milling technology under simultaneous revolution/rotation motion. The determination of the size distribution and morphology was performed using laser diffraction and scanning electron microscopy, respectively. Furthermore, differential scanning calorimetry, differential thermogravimetry, X-ray diffraction and Low Shift Raman spectroscopy were performed to investigate possible interactions and changes in the crystalline state of the nanocrystals. To measure the increase in the equilibrium solubility and dissolution rate, the shake flask and intrinsic dissolution rate (IDR) methods were used respectively. The nanocrystals size appeared thirty times lower (231 nm) compared to the initial size (7,1 µm). The nanocrystals were stable with concern to its thermal characteristic not showing interactions between the excipients and the nanocrystals; however, they exhibited less defined crystal structure, indicating partial amorphization. The nanocrystals saturation solubility increased approximately three times. Consequently, 2.2, 1.8 and 3.8 folds increase were observed in IDR when compared to the Furosemide raw material in SGF, buffer 4.5 and SIF, respectively. The in silico nanocrystal studies revealed moderate changes in its oral absorption and pharmacokinetic profile. When the pulmonary route of administration was used, the nanocrystals showed higher performance compared to oral route administration; highlighting the increase in Fa % and Cmax and a significant decrease in Tmax. In conclusion, the technology platform obtained has potential application in the development of innovative dosage forms for Furosemide pulmonary delivery.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06112014-090209 |
Date | 19 August 2014 |
Creators | Savio Fujita Barbosa |
Contributors | Nádia Araci Bou-Chacra, Newton Andréo Filho, Aparecida Peres Del Comune, Priscyla Daniely Marcato Gaspari, Terezinha de Jesus Andreoli Pinto |
Publisher | Universidade de São Paulo, Fármaco e Medicamentos, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds