Return to search

Spin-orbit coupling effects and g-factors in zinc-blende InSb and wurtzite InAs nanowires using realistic multiband k · p method / Efeitos do acoplamento spin-órbita e fatores giromagnéticos em nanofios de blenda de zinco InSb e wurtzita InAs usando o método k · p multibanda

Spin-dependent phenomena in semiconductor nanowires have recently gained a lot of attention, in special because these nanostructures can be a viable setup to study exotic states of matter like the Majorana fermions. One of the key ingredients to accommodate the Majorana zero modes is the spin-orbit coupling in the nanowires, which has been usually treated with two-band Hamiltonians. The spin-orbit coupling in semiconductors arise from two distinct sources being the bulk inversion asymmetry, when the unit cell does not present inversion symmetry, e.g. when the crystal unit cell is composed by two different atoms, and the structural inversion asymmetry, when the whole system does not have a mirror symmetry. To describe the system these effective models take as input, parameters that are dependent on the system configuration and measurement setups. Although these effective models have been successful in determine relevant physical properties, a more realistic description of the interacting energy bands is required, specially in quantum confined systems where the interplay between both sources of spin-orbit coupling can change the systems properties in non-trivial ways. For instance, in quantum wells there is an anisotropy of the g-factor due to the quantum confinement and structural inversion asymmetry. Furthermore, the in-plane g-factor also have an anisotropy which is due to the intrinsic spin-orbit coupling and it is not captured by these effective models. In this study, we use realistic multiband k · p Hamiltonians, including both spin-orbit coupling mechanisms, to determine the band structure of zincblende InSb and wurtzite InAs nanowires under a transverse electric field. We analyze the effects of the lateral quantum confinement for a hexagonal cross-section geometry and of the change in growth directions, extracting the relevant physical parameters for the first conduction subband. We found that the g-factors are heavily dependent on the quantum confinement and nanowire orientation, with in-plane/out-of-plane anisotropies up to 3%. We also found that for zinc-blende nanowires the extrinsic spin-orbit coupling is dominant over the intrinsic one whereas, for wurztize, the opposite behavior holds. In order to assess if the nanowires could host the aforementioned Majorana zero modes we investigate under which circumstances the topological phase transition occurs, using the Bogoliubov-de Gennes formalism to couple the nanowire with a superconductor, and we found that using realistic and experimental feasible parameters, indeed, the phase transition occurs. In conclusion, our systematic investigation of nanowires shows that the spin-orbit coupling energy can be fine tuned by the external electric field in experimentally achievable setups that ultimately could guide the search for the elusive Majorana modes. Moreover, our numerical approach is not restricted to a specific material or dimensionality and can be used to study others systems to provide useful insights into the electronic and spintronic fields. / Recentemente, fenômenos dependentes de spin em nanofios semicondutores se tornaram uma área de pesquisa ativa especialmente porque essas nanoestruturas podem ser viáveis para o estudo de estados exóticos da matéria como, por exemplo, os férmions de Majorana. Um dos ingredientes chave para que esses modos de excitação possam existir em nanofios é o acoplamento spin-órbita, o qual tem sido usualmente tratado com modelos de duas bandas. O acoplamento spin-órbita em semicondutores aparece de duas fontes distintas sendo elas a assimetria de inversão no bulk, quando a célula unitária do cristal não possui simetria de inversão, por exemplo, quando é formada por dois átomos diferentes, e a assimetria de inversão estrutural, quando o sistema como um todo não possui simetria de inversão. Para descrever o sistema, os modelos efetivos de duas bandas usam como entrada parâmetros que dependem tanto do sistema específico quanto da configuração do arranjo experimental. Apesar desses modelos terem sucesso em descrever algumas das propriedades físicas relevantes, uma descrição mais realística da interação entre as bandas de energia se faz necessária, especialmente em sistemas com confinamento quântico onde a ação combinada das duas fontes de acoplamento spin-órbita muda as propriedades do sistema de maneira não-trivial. Por exemplo, o fator giromagnético em poços quânticos é anisotrópico devido aos efeitos de ambos, confinamento quântico e a assimetria de inversão estrutural. Ademais, o fator giromagnético ao longo do plano também possui uma anisotropia, a qual tem origem no acoplamento spin-órbita intrínseco do sistema e não é capturada por esses modelos efetivos. Nesse estudo, nós usamos Hamiltonianos k · p multibanda, incluindo ambos os mecanismos de acoplamento spin-órbita, para determinar a estrutura de bandas de nanofios de InSb na fase blenda de zinco e InAs na fase wurtzita sob a ação de um campo elétrico transversal. Nós analisamos os efeitos do confinamento quântico lateral, para fios com seção transversal hexagonal, e diferentes direções de crescimento, extraindo parâmetros físicos relevantes para a primeira sub-banda de condução. Nós encontramos que os fatores giromagnéticos são fortemente influenciados pelo confinamento quântico e orientação dos nanofios, com anisotropias no plano e fora do plano de até 3%. Nós também encontramos que para nanofios de InSb na fase blenda de zinco, o acoplamento spin-órbita extrínseco domina o intrínseco enquanto que, em nanofios de InAs na fase wurtzita, vale o oposto. Para avaliar se os nanofios podem hospedar os modos de Majorana de energia zero nós investigamos sob quais circunstâncias a transição de fase topológica ocorre usando o formalismo de Bogoliubov-de Gennes para acoplar o nanofio a um supercondutor, e encontramos que usando nossos parâmetros e em condições experimentalmente factíveis, de fato, a transição de fase ocorre. Em conclusão, nossa investigação sistemática nos nanofios mostrou que o acoplamento spin-órbita pode ser ajustado por fontes externas, tais como um campo elétrico aplicado, e em configurações experimentais factíveis e que ultimamente pode guiar à busca dos elusivos modos de Majorana. Além do mais, nossa abordagem numérica não é restrita a esses materiais em específico e nem a nanofios, podendo ser usada para estudar outros sistemas provendo intuições úteis nos campos de eletrônica e spintrônica.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-30012018-163011
Date06 September 2017
CreatorsCampos, Tiago de
ContributorsSipahi, Guilherme Matos
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0027 seconds