La multiplication des résistances aux antibiotiques constitue une grave menace qui nécessite de nouvelles stratégies antimicrobiennes. Le but de ce travail est d'étudier le potentiel des nanocapsules lipidiques (NCLs) pour l'administration de peptides antimicrobiens (PAMs). Les premiers travaux ont porté sur le développement et l'optimisation de NCLs chargées en PAMs. Différentes stratégies d’association ont été testé (adsorption à la surface ou encapsulation dans le coeur de NCLs). Les résultats ont démontré une efficacité d'association comprise entre 20 et 40%, lorsque les peptides sont adsorbés à la surface et plus de 80%,lorsqu’ils sont encapsulés. La deuxième partie s’est concentrée sur l'évaluation de l’activité des complexes PAMs et NCLs ainsi que leur stabilité vis-à-vis des protéases. Les résultats ont montré que l'adsorption entraîne une potentialisation de l'activité antimicrobienne des PAMs, associée à une protection partielle contre la dégradation enzymatique. Inversement, l’encapsulation des PAMs montre une meilleure stabilité aux enzymes, corrélée à une efficacité d'encapsulation supérieure sans amélioration de l'activité antimicrobienne in vitro. Dans une troisième partie, les mécanismes impliqués dans les interactions LNC/PAM ainsi que l'interaction du complexe avec un modèle de membrane bactérienne ont été étudiés. Il a été montré que la structure et la flexibilité des PAMs aux interfaces solide-liquide gouverneraient l'adsorption des peptides à la surface des NCLs, entrainant un changement de leur comportement avec les membranes bactériennes. L’ensemble de ces résultats démontre le potentiel prometteur des NCLs en tant que vecteur de PAMs. / The rapid increase in drug-resistant infections presents an acute problem in the healthcare sector, generating interest in novel antimicrobial strategies. The aim of this work is to explore the potential of lipid nanocapsules (LNCs) for Antimicrobial peptides (AMPs) delivery. Firstly, the experiments were focused on the development and optimization of AMP-loaded LNCs. Different strategies were investigated to deliver AA230,LL37 and DPK060 using LNCs (peptides adsorption atthe surface or encapsulated in the core of modified LNCs). The results demonstrated an association efficiency of 20 to 40%, when peptide is adsorbed, and over 80% encapsulation efficiency, when peptides are encapsulated. The second part concerned the study ofthe influence of peptides loading on their activity and stability against proteases. The results showed that peptides adsorption induced a potentiation of the antimicrobial activity of the native peptides, with a partial protection against proteolytic degradation. Conversely, peptides encapsulation allowed better peptide stability, correlated with higher encapsulation efficiencies and a preservation of the in vitro antimicrobial activity. In a third part, the mechanisms involved in LNC/AMP interactions and the complex interaction with model bacterial membrane have been evaluated. It has shown that structure and flexibility at solid-liquid interfaces govern peptide adsorption on the surface of the LNCs, which in turn is expected to change LNCs properties and interaction with bacterial membranes. Taken together, these results demonstrate the potential of LNCto deliver AMPs as an alternative anti-infective therapy.
Identifer | oai:union.ndltd.org:theses.fr/2017ANGE0069 |
Date | 28 April 2017 |
Creators | Matougui, Nada |
Contributors | Angers, Saulnier, Patrick |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds