This thesis forms part of an ongoing project in the DNA Group to build and operate a synthetic ribosome. We present two synthetic ribosome designs that can be combined with DNA-templated chemistry to generate libraries of functional synthetic small molecules. In Chapter 2 we use the DNA strand displacement technique to construct a mechanism that is capable of moving along a DNA track. We explore ways to control the speed and the driving force of the mechanism, and present a mathematical model of the system. We discuss the ability of the design to incorporate chemically-functionalised DNA strands. In Chapter 3 we use a 2D DNA origami tile as the basis of the synthetic ribosome mechanism. Functionalised DNA strands are arranged on the surface of the tile, and we demonstrate the ability to template reactions between the strands, and discuss the possibility of creating a library of distinct chemical products from a single origami tile.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:547604 |
Date | January 2010 |
Creators | Lally, Parminder |
Contributors | Turberfield, Andrew J. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:26573255-79bc-482d-9dd9-8c9f771ccbd8 |
Page generated in 0.002 seconds