The Canadian mining industry is one of Canada’s largest industrial sectors, creating jobs and a significant contributor to the economy. However, the mining activities can be detrimental to the environment due to the release of pollutants. Mining extensively uses nitrogen-based explosives, creating explosive impacted mining wastewaters (EIMWW) that contains substantial quantities of ammonia which is toxic to fish and thus, it has serious environmental repercussions. Ion-exchange (IE) with zeolite is an effective method for ammonia removal as it is easily automated, has a rapid start-up, is not significantly impacted by cold temperature or toxicity effects. Thus, it is particularly suited for Canadian mines. However, the traditional IE regeneration approach of using high concentration NaCl solutions creates a secondary polluting stream. Chlorine regeneration of ammonia-loaded zeolite appears to be a promising option to avoid such a secondary source of contamination. An evaluation of this option and other alternative regeneration are the main focus of this thesis.
This thesis includes two initiatives. The first is a set of multi-cycle column loading and regeneration tests to investigate the feasibility of a zeolite (SIR-600) column for ammonia removal from a synthetic EIMWW, containing K and Ca as competing ions, coupled with regeneration using different concentration of chlorine solutions and combined salt+chlorine regeneration solutions. NaOCl regeneration was quite effective, but it was slower than salt regeneration. During the NaOCl regeneration, the main mechanism appears to be the oxidation of ammonia to nitrogen gas and hydrogen ions, however the Na in the NaOCl solution also seems to have a role in the regeneration. This results in pH levels around 3 for approximately half the regeneration cycles. In the combined salt+chlorine regeneration, the incorporation of the salt leads to more rapid elusion of the three ions presumbaly because of the higher sodium concentration (205 meq/L Na versus 14 meq/L Na). The long-term total ammonia nitrogen (TAN) uptake of SIR-600 regenerated with a NaOCl and NaOCl-NaCl were fairly similar, they varied within a relatively small range (0.185meq/g - 0.202meq/g). Thus, the various regeneration schemes did not impact the TAN uptake. The only apparent limitation of NaOCl regeneration is that it required a longer duration. However, the NaOCl is very promising because it resulted in very similar TAN uptakes, the SIR-600 showed a higher preference for TAN over K and avoided creating an additional process waste stream.
The second initiative addressed concerns regarding the long-term integrity of SIR-600 arising from its exposure to low pH solutions during the regeneration. Long-term batch tests were performed to expose SIR-600 to low pH conditions (pH=2, pH=3, pH=4) and the characteristics of this IE material were evaluated. The 3-month low batch exposure experiment showed that pH below 4 decreased the TAN uptake capacity by up to 58%. There was no considerable impact on the surface gravimetric analysis (TGA) and Powder x-ray diffraction (PXRD). The exposure to pH=2 and pH=3 led to breakdown of the outer surface of SIR-600 and the creation of fine particles. It also led to decreases in the BET surface area and a decrease in the TAN uptake proportional to the decrease in the BET surface area. Thus, the exposure to pHs below 4 impacts the durability of SIR-600, so SIR-600 may have to be replaced more frequently. However, regeneration with NaOCl solutions still seems very promising as it avoids the creation of a secondary waste stream.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/44465 |
Date | 05 January 2023 |
Creators | Akerele, Grace |
Contributors | Sartaj, Majid, Narbaitz, Roberto M. |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.6269 seconds