Return to search

Novel Methods for Co-crystallisation

The research described in this dissertation mainly covers the development of novel technologies for co-crystallisation along with the discovering of plumbagin co-crystal and thermodynamic interrelationship between the co-crystal polymorphs. Co-crystallisation is a fast growing field in the area of crystal design and has shown potential advantages in the field of pharmaceutical. Currently, many research groups are working on the development of new technologies for the synthesis of pure and stoichiometrically controlled co-crystals.
In present study, three novel technologies have been developed for co-crystallisation, which include microwave assisted co-crystallisation, spherical crystallisation and microwave assisted sub-critical water processing.
The microwave assisted co-crystallisation is a slurry based technology where, effects of drug solubility and dielectric properties of the solvent were investigated using caffeine / maleic acid as a model co-crystal pair. The mechanism of co-crystallisation under microwave irradiation has been proposed. The co-crystals of plumbagin with improved solubility were obtained with the coformers such as hydroquinone, resorcinol and urea using microwave assisted co-crystallisation technique.
The spherical crystallisation technology was developed for co-crystallisation of carbamazepine / saccharin co-crystal pair and demonstrated its application for polymorphic control and as a potential technique for the purification of desired crystal form through surface energetic based separation. The thermodynamic interrelationship between Form I and Form II of carbamazepine / saccharin co-crystal was studied using different thermodynamic tests. The results obtained suggest that the carbamazepine / saccharin co-crystal polymorphs are monotropic.
Microwave assisted sub-critical water processing has been explored as a green technology for the synthesis of co-crystals. Carbamazepine / saccharin co-crystal pair has been used as a model pair and effects of processing variables on the resulting crystal form and degradation of an API have been studied.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/12841
Date January 2014
CreatorsPagire, Sudhir K.
ContributorsParadkar, Anant R
PublisherUniversity of Bradford, School of Life Sciences
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, PhD
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0024 seconds