Return to search

Mycorrhizae In Sagebrush-Steppe Community Restoration: Mycorrhizal Dependency Of Invasive And Native Grasses With Intraspecific And Interspecific Competition

Mycorrhizae have been used in restoration for decades. However, studies assessing the use of mycorrhizae in Bromus tectorum-invaded areas of the Great Basin are limited. Two greenhouse pot experiments were conducted to assess the role of mycorrhizae in sagebrush restoration. The first objective (Chapter 2) was to determine the response of Pseudoroegneria spicatum, Elymus elymoides, and B. tectorum to mycorrhizal symbiosis by altering
phosphorus, density, species, presence of mycorrhizae and water levels in a 5 factor design. To assess the mycorrhizal response, a variety of morphological and physiological traits were measured, such as tissue P concentration, specific root length, specific leaf area, carbon isotope discrimination, etc. The effects of the different treatment combinations were analyzed using ANOVA. The second objective (Chapter 3) was to determine the role of different inocula in competition between the three grasses. Species, density, and inoculum type were altered in a 3 factor design. Inoculum was cultured on Allium plants. The effect of locally cultured inoculum on the species was compared to the effect of commercial inoculum. The response of each species to mycorrhizae with different species compositions and densities was assessed. Morphological measurements were used to determine each species response to the different factor combinations. The effects of the different treatment combinations were analyzed using ANOVA. This research provides land managers with information regarding the efficacy of using local versus commercial inocula and whether they should use mycorrhizae in restoring their systems.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1395
Date01 May 2009
CreatorsScherpenisse, Dara S.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0141 seconds