Arthropod natural enemies play a key role in controlling potentially damaging pest populations in agroecosystems. An abundant and diverse natural enemy community is associated with higher yields in a variety of crops. Certain aspects of soybean production can make a field more or less amenable to a robust natural enemy community. For instance, commonly used broad-spectrum insecticides which are highly toxic to most arthropods can decrease natural enemy densities and allow for secondary pest outbreaks. Selective insecticides that have less impact on natural enemy populations allow for pest control while preserving important predators. Another production decision that could alter natural enemy communities is the choice of cropping system, specifically planting early (full season) or late, after small grain harvest (double crop). My research objectives were to examine how 1) selective insecticides and 2) cropping system affect the density and diversity of natural enemies in Virginia soybean. To address the first objective I compared the natural enemy community in soybean plots that were exposed to selective insecticides, broad-spectrum insecticides or no insecticide. I sampled insects using three different techniques and found that the two selective insecticides I tested, both from a new class called diamides, did not reduce the natural enemy community compared to controls. To examine how cropping system affects the natural enemy community I sampled full season and double crop fields during the growing season for two years. In 2014 ground-dwelling spider diversity was higher in full season soybean. In both years, double crop soybeans had higher abundance of spiders and insect natural enemies on the ground and in the foliage compared with full season soybean. This was unexpected, since double crop soybeans are planted later than full season and arthropod populations would have less time to colonize and grow. When I compared diversity of a family of predatory beetles I found higher diversity in full season soybean. The similarity in spider and insect natural enemy diversity and abundance trends suggests that a greater number of species can co-exist in full season soybean, while in double crop soybeans a few dominant natural enemies thrive. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/71653 |
Date | 28 June 2016 |
Creators | Whalen, Rebecca Anne |
Contributors | Entomology, Herbert, D. Ames Jr., Kuhar, Thomas P., Reisig, Dominic Duane, Pfeiffer, Douglas G., Brewster, Carlyle C. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds