Return to search

Možnosti přípravy nanočástic a nanovláken s antimikrobiální složkou / Preparation of nanoparticles and nanofibers with antimicrobial components

The presented diploma thesis is focused on the preparation of new materials with antimicrobial effect. Liposomes and nanofibers from polyhydroxybutyrate containing clotrimazole and natural extracts with good antifungal and antioxidant effects were prepared. The theoretical part contains examples and short description of using nanoparticles and nanofibers in cosmetics and medicine and the description of plants which have positive and potential antimycotic effects. Moreover, methods for particles and fibers characterisation were shortly described. In the experimental part, natural water and lipid extracts were prepared and spectrophotometrically characterised for the content of polyphenols, flavonoids and the antioxidant activity. Liposomes and liposomes containtng PHB were prepared from selected extracts and the encapsulation effectivity, shortterm and longterm stability via determination of polyphenols were determined. Prepared particles were characterized with DLS method (size) and zeta- potential (stability). PHB nanofibers functionalised with selected lipid extracts and clotrimazole were prepared via electrospinning and forcespinning, and examined via FLIM and FTIR-ATR methods and spectrophotometry was used for antioxidant activity and release of active substances determination. Antifungal properties of prepared particles, extracts and fibers using the test system Candida glabrata were studied. Finally, cytotoxicity of selected samples was tested with MTT assay using human keratinocytes.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:316150
Date January 2017
CreatorsSosková, Simona
ContributorsVeselá, Mária, Skoumalová, Petra
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0018 seconds