Ce mémoire porte sur l’implémentation des propositions relatives en français dans le réalisateur profond multilingue GenDR. Les réalisateurs de surface (SimpleNLG, JSReal ou RealPro) génèrent des propositions relatives, mais dans les réalisateurs profonds (MARQUIS, Forge ou GenDR) cette génération reste rudimentaire. Dans un corpus français de 21 461 phrases, 4505 contiennent une relative, soit environ une phrase sur cinq. Il s’agit donc d’un phénomène linguistique important que GenDR devrait couvrir.
Notre cadre théorique est la théorie Sens-Texte. Les propositions relatives se situent au niveau de l’interface sémantique-syntaxe. Nous présentons une typologie des propositions relatives. Nous définissons la relative et elle est divisée en deux grandes catégories : directe et indirecte. La définition des pronoms relatifs se base sur Riegel et al. (2018).
Nous avons utilisé GREW, afin d’analyser un corpus du français en SUD. Il y a plus de relatives directes (≈78 %) que d’indirectes (≈22 %). Les pronoms les plus fréquents sont qui (58,8 %), que (13,8%), dont (10,2%) et où (10%), enfin viennent préposition suivie de lequel (5,7%), préposition suivie de qui (0,7 %), lequel (0,4 %), préposition suivie de quoi (0,1 %). Le rôle syntaxique le plus fréquent du nom modifié est objet direct.
Puis, nous avons implémenté dans GenDR les règles pour la relative directe, la relative indirecte, et les pronoms relatifs qui, que, dont, préposition suivie de qui et préposition suivie de lequel. Notre implémentation couvre les types de relatives les plus communs en français. Les phénomènes qui nous résistent sont la génération des pronoms lequel, préposition suivie de quoi, où et qui objet, le traitement des verbes modaux et la génération des phrases avec un verbe à l’infinitif après un verbe modal, le traitement des verbes supports et autres collocatifs. Notre implémentation traite le français, mais peut être facilement adaptée à d’autres langues. / This Master’s thesis is about the implementation of French relative clauses in the multilingual deep realizer GenDR. Surface realizers (SimpleNLG, JSReal or RealPro) generate relative clauses, but in deep realizers (MARQUIS, Forge or GenDR) their handling remains rudimentary. In a French corpus of 21,461 sentences, 4,505 contain a relative, i.e. about one in five sentences. Thus, it is a core linguistic phenomenon that should be handled by GenDR.
Our theoretical framework is the Meaning-Text theory. Relative clause is relevant in the semantics-syntax interface. We offer a typology of relative clauses. The relative clause is defined, and it is divided into two main categories: direct and indirect. Our definition of relative pronouns is based on Riegel et al. (2018).
We used GREW to analyze a French corpus in SUD. There are more direct (≈78%) than indirect (≈22%) relatives. The most frequent pronouns are qui (58.8%), que (13.8%), dont (10.2%) and où (10%), then a preposition followed by lequel (5.7%), a preposition followed by qui (0.7%), lequel (0.4%), and a preposition followed by quoi (0.1%). The most frequent function of the modified noun is direct object.
We implemented in GenDR the rules for direct relative, indirect relative, and relative pronouns qui, que, dont, a preposition followed by qui, and a preposition followed by lequel. Our implementation covers the most common types of relatives. The phenomena that are not well handled by our rules are the generation of the pronouns lequel, a preposition followed by quoi, où and object qui, the treatment of modal verbs and the generation of sentences with an infinitive verb after a modal verb, the treatment of support verbs and other collocations. Our implementation is for French, but it can be easily adapted to other languages.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/26083 |
Date | 10 1900 |
Creators | Portenseigne, Charlotte |
Contributors | Lareau, François |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0016 seconds