Return to search

RNA-mediated virulence gene regulation in the human pathogen Listeria monocytogenes

The Gram-positive human pathogen Listeria monocytogenes uses a wide range of virulence factors for its pathogenesis. The majority of its virulence genes are encoded on a 9-kb pathogenicity island and are controlled by the transcriptional activator PrfA. Expression of these genes is maximal at 37°C and minimal at 30°C in a mechanism involving an RNA thermosensor. This thesis brings up different aspects of RNA-mediated regulation, including regulatory RNA structures within coding mRNA controlling expression to 5-untranslated RNA (5´-UTR) that controls downstream genes (cis-acting) as well as small non-coding RNAs (ncRNAs) that bind other target RNA (trans-acting). We investigated the importance of the coding region of the prfA-mRNA for its expression. Various lengths of prfA-mRNA were fused with reporter genes. Our finding suggested that the first 20 codons of prfA-mRNA were essential for efficient translation in Listeria monocytogenes. Translation of the shorter constructs was shown to be reduced. The expression level showed an inverse correlation with the RNA secondary structure stability in the beginning of the coding region. Riboswitches have previously been known to control expression of their downstream mRNA in a cis-acting manner. A trans-acting S-adenosylmethionine-binding riboswitch termed SreA was identified in Listeria monocytogenes. It was found to control the expression of the virulence regulator PrfA, by binding to the prfA-UTR and thereby affecting its translation. We examined the RNA locus encoding different virulence factors in Listeria monocytogenes. Several of them were preceded by 5´-UTRs of various lengths. We speculate that these 5´-UTRs could control expression of the downstream mRNA, provided they are of sufficient length. These findings prompted us to examine where and when Listeria monocytogenes switches on gene expression. Tiling array was used to compare RNAs isolated from wild-type and mutant bacteria grown at different growth conditions. Antisense RNAs covering parts of or whole open-reading frames as well as 29 new ncRNAs were identified. Several novel riboswitches possibly functioning as upstream terminators were also found. My thesis work compiles together a variety of novel RNA-mediated gene regulatory entities. A first coordinated transcriptional map of Listeria monocytogenes has been set up. My work has also revealed that the expression of the virulence regulator PrfA is controlled at several levels, indicating the importance of both the 5´-UTR and the coding RNA for regulated expression.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-33096
Date January 2010
CreatorsLoh, Edmund
PublisherUmeå universitet, Institutionen för molekylärbiologi (Medicinska fakulteten), Umeå universitet, Molekylär Infektionsmedicin, Sverige (MIMS), Umeå, Sweden : Print & Media
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUmeå University medical dissertations, 0346-6612 ; 1337

Page generated in 0.0787 seconds