Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source.
In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems.
In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from literature. While the structures of the first system were in the micrometer regime, the capability to probe buried nanostructures is demonstrated at a sample of indium arsenide quantum dots. Those dots are covered by a thick layer of gallium arsenide. For the first time ever, it is shown experimentally that transitions between electron states in single quantum dots can be investigated by near-field microscopy. By monitoring the near-field response of these quantum dots while scanning the wavelength of the incident light beam, it was possible to obtain characteristic near-field signatures of single dots. Near-field contrasts up to 30 % could be measured for resonant excitation of electrons in the conduction band of the indium arsenide dots.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:d120-qucosa-85330 |
Date | 14 March 2012 |
Creators | Jacob, Rainer |
Contributors | Helmholtz-Zentrum Dresden-Rossendorf,, Helmholtz-Zentrum Dresden-Rossendorf, |
Publisher | Helmholtz-Zentrum Dresden-Rossendorf |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:report |
Format | application/pdf |
Relation | dcterms:isPartOf:Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-009 |
Page generated in 0.0028 seconds