CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Neste trabalho, à discutido o problema de reconhecimento de objetos utilizando imagens extraÃdas de um sensor industrial 3D. NÃs nos concentramos em 9 extratores de caracterÃsticas, dos quais 7 sÃo baseados nos momentos invariantes (Hu, Zernike, Legendre, Fourier-Mellin, Tchebichef, Bessel-Fourier e Gaussian-Hermite), um outro à baseado na Transformada de Hough e o Ãltimo na anÃlise de componentes independentes, e, 4 classificadores, Naive Bayes, k-Vizinhos mais PrÃximos, MÃquina de Vetor de Suporte e Rede Neural Artificial-Perceptron Multi-Camadas. Para a escolha do melhor extrator de caracterÃsticas, foram comparados os seus desempenhos de classificaÃÃo em termos de taxa de acerto e de tempo de extraÃÃo, atravÃs do classificador k-Vizinhos mais PrÃximos utilizando distÃncia euclidiana. O extrator de caracterÃsticas baseado nos momentos de Zernike obteve as melhores taxas de acerto, 98.00%, e tempo relativamente baixo de extraÃÃo de caracterÃsticas, 0.3910 segundos. Os dados gerados a partir deste, foram apresentados a diferentes heurÃsticas de classificaÃÃo. Dentre os classificadores testados, o classificador k-Vizinhos mais PrÃximos, obteve a melhor taxa mÃdia de acerto, 98.00% e, tempo mÃdio de classificaÃÃo relativamente baixo, 0.0040 segundos, tornando-se o classificador mais adequado para a aplicaÃÃo deste estudo. / In this work, the problem of recognition of objects using images extracted from a 3D industrial sensor is discussed. We focus in 9 feature extractors (where seven are based on invariant moments -Hu, Zernike, Legendre, Fourier-Mellin, Tchebichef, BesselâFourier and Gaussian-Hermite-, another is based on the Hough transform and the last one on independent component analysis), and 4 classifiers (Naive Bayes, k-Nearest Neighbor, Support Vector machines and Artificial Neural Network-Multi-Layer Perceptron). To choose the best feature extractor, their performance was compared in terms of classification accuracy rate and extraction time by the k-nearest neighbors classifier using euclidean distance. The feature extractor based on Zernike moments, got the best hit rates, 98.00 %, and relatively low time feature extraction, 0.3910 seconds. The data generated from this, were presented to different heuristic classification. Among the tested classifiers, the k-nearest neighbors classifier achieved the highest average hit rate, 98.00%, and average time of relatively low rank, 0.0040 seconds, thus making it the most suitable classifier for the implementation of this study.
Identifer | oai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:8327 |
Date | 08 May 2014 |
Creators | Rodrigo Dalvit Carvalho da Silva |
Contributors | George Andrà Pereira ThÃ, Eduardo Furtado de Simas Filho, FÃtima Nelsizeuma Sombra de Medeiros, Guilherme de Alencar Barreto |
Publisher | Universidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica, UFC, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds