The rise of antimicrobial resistance (AMR) has culminated in the most pressing problem in modern medicine. The situation is most acute with regards to the management of multi- drug resistant Gram-negative infections (MDRGNB) with common infections increasingly untreatable due to rapidly dwindling therapeutic options. A solution to the problem of AMR is unlikely to be easily found, but revisiting and re-purposing existing antimicrobials is a viable approach in the medium term. This study investigated the use of unorthodox antimicrobial combination therapies for the treatment of MDRGNB, with particular focus on agents of last resort. A systematic review of clinical studies highlighted the potential for polymyxin (colistin) combination therapies (e.g. colistin-rifampicin, colistin-carbapenems), although this could not be supported in a formal meta-analysis. A systematic approach for screening MDRAB for susceptibility to novel colistin combinations using multiple methods was employed and uncovered a number that were more potent than those previously identfied. The most potent combination that was consistently identified was colistin when combined with fusidic acid, despite this drug having no useful activity against MDRGNB on its own. The combination was further evaluated in static time-kill assays against a range of Gram-negative pathogens with defined resistance mechanisms, including to polymyxins and using invertebrate (Galleria mellonella) and murine models of MDRGNB infection. Colistin and fusidic acid combination therapy was subsequently used to successfully treat a case of ventilator-associated pneumonia due to MDR A. baumannii. This work highlights how older drugs can be re-purposed to tackle the problem of AMR using a precision medicine approach. Further studies to elucidate the mechanism of action of the colistin- fusidic acid combination and a formal clinical trial are warranted to investigate the potential utility of this combination in the treatment of MDRGNB with the expressed goal of bridging the current antimicrobial development gap.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:766221 |
Date | January 2018 |
Creators | Phee, Lynette |
Publisher | Queen Mary, University of London |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://qmro.qmul.ac.uk/xmlui/handle/123456789/44695 |
Page generated in 0.0019 seconds