Return to search

Least-squares methods for computational electromagnetics

The modeling of electromagnetic phenomena described by the Maxwell's equations is of critical importance in many practical
applications. The numerical simulation of these equations is challenging and much more involved than initially believed. Consequently, many discretization techniques, most of them quite complicated, have been proposed.

In this dissertation, we present and analyze a new methodology for approximation of the time-harmonic Maxwell's equations. It is an extension of the negative-norm least-squares finite element approach which has been applied successfully to a variety of other problems.

The main advantages of our method are that it uses simple, piecewise polynomial, finite element spaces, while giving quasi-optimal approximation, even for solutions with low
regularity (such as the ones found in practical applications). The numerical solution can be efficiently computed using standard and well-known tools, such as iterative methods
and eigensolvers for symmetric and positive definite
systems (e.g. PCG and LOBPCG) and reconditioners for second-order problems (e.g. Multigrid).
Additionally, approximation of varying polynomial degrees is allowed and spurious eigenmodes are provably avoided.

We consider the following problems related to the Maxwell's equations in the frequency domain: the magnetostatic problem, the electrostatic problem, the eigenvalue problem and the full time-harmonic system. For each of these problems, we present a natural (very) weak
variational formulation assuming minimal regularity of the solution. In each case, we prove error estimates for the approximation
with two different discrete least-squares methods. We also show how to deal with problems posed on domains that are multiply connected or have multiple boundary components.

Besides the theoretical analysis of the methods, the dissertation provides various numerical results in two and three dimensions
that illustrate and support the theory.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/1115
Date15 November 2004
CreatorsKolev, Tzanio Valentinov
ContributorsBramble, James, Pasciak, Joseph
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Format2012365 bytes, 256131 bytes, electronic, application/pdf, text/plain, born digital

Page generated in 0.0019 seconds