In this work we study inhomogeneous cosmological models. After a brief review of applications of inhomogeneous solutions to Einstein equations in cosmology, we give a short description of the most widely used inhomogeneous cosmological models. In the second chapter we study in detail geometrical prop- erties of the Szekeres spacetime and we are concerned with the interpretation of the metric functions in different types of geometries. In the last chapter we model inhomogeneity in Szekeres spacetime. We derive formula for the density contrast and investigate its behaviour. We also derive conditions for the density extremes that are necessary for avoiding the shell crossing singularity in Szekeres spacetime. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:336148 |
Date | January 2014 |
Creators | Vrba, David |
Contributors | Svítek, Otakar, Pravda, Vojtěch, Žofka, Martin |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds