Return to search

GIS-based Assessment of Debris Flow Susceptibility and Hazard in Mountainous Regions of Nepal

Rainfall-induced landslides that change into debris flows and travel large distances are one of the treacherous natural calamities that can occur in mountainous areas, particularly in Nepal’s mountains. Debris flow was the second highest cause of human death in Nepal after epidemics between 1971 and 2016. Because debris flow is common in mountainous regions, its prediction and remedial measures through land use plans are important factors to consider for saving lives and properties. The spatial distribution of the initial landslides that change into debris flow, on a watershed scale, is still an important area of study in this mountainous region to develop essential land use plan.
In this research, hydrologic, slope stability and Flow-R models are applied in GIS modeling to locate potential landslide and debris flow areas for a given threshold rainfall in a mountainous watershed-Kulekhani, Nepal. Soil samples from 73 locations within the watershed and a geotechnical investigation on one old landslide area were considered to determine the Soil Water Characteristics Curve (SWCC), friction angle, cohesion, and infiltration characteristics of the subsurface soils in the study area. This information is applied in an unsaturated slope stability model to find unstable locations in the study watershed in a GIS environment. The model is tested on a recorded 24-hour rainfall of 540 mm in the watershed, and potential landslide locations are obtained. The validation results show that there is a good agreement between the predicted and mapped landslides. For debris flow run out, Flow-R model, which has the capability to analyze debris flow inundation with limited input information, and the model software is readily available in the public domain, was chosen for further analysis. Two recent debris flow events and the study watershed are taken as case studies to identify the appropriate algorithms of Flow-R for runout analysis of the study areas.
Landslide-triggering threshold rainfall frequency is related to the frequency of landslides and the debris flow hazard in these mountains. The above validated models are applied in a GIS environment to locate potential debris flow areas in expected threshold rainfall. Rainfall records from 1980 to 2013 are computed for one- to seven-day cumulative annual maximum rainfall. The probable rainfalls for 1 in 10 to 1 in 200 years return periods are identified. The anticipated probable rainfalls are modeled in the GIS environment to identify the factor of safety of mountain slopes for landslide susceptibility in the study watershed. The Flow-R model with user-defined landslide-susceptible areas was chosen for debris flow runout analysis. A relation between the frequency of rainfall and landslide-induced debris flow hazard area is derived for return periods of 25, 50, 100, and 200 years. Also, the debris flow hazard results from the analysis are compared with a known event in the watershed and found to agree. This developed method can be applied to anticipated landslide and landslide-induced debris flow from the live rainfall record to warn hazard-prone communities for saving lives and regulating hazardous transportation corridors in these mountains. In addition to this, this methodology will be a useful tool to help policy makers create appropriate land use plans.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/38817
Date14 February 2019
CreatorsPaudel, Bhuwani Prasad
ContributorsFall, Mamadou, Daneshfar, Bahram
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0035 seconds