Return to search

Molten salt spectroscopy and electrochemistry for spent nuclear fuel treatment

Pyroprocessing, via electrorefining in a molten salt bath, is a promising treatment route for spent nuclear fuel reprocessing. In order to implement such a technology and ensure its safe operation it is vital to develop on-line techniques to understand and monitor the molten salt and its contents. These tools are technically challenging because of the high temperatures and corrosive environment experienced in molten salt media. Electrochemical, spectroscopic and spectroelectrochemical methods were developed and used to study actinide and fission product behaviour in molten LiCl-KCl eutectic. A spectroscopic furnace was designed and supporting methodology developed in order to allow the acquisition of reproducible quantitative data. The apparatus monitored the precipitation of NdCl3 by the addition of Li2CO3 and PrCl3 by the addition of Li2O in LiCl-KCl eutectic. The precipitates formed were identified as the respective LnOCl. In order to probe actinide behaviour in this hygroscopic medium, dry actinides chlorides were synthesised. The oxidation of uranium metal by BiCl3 in LiCl-KCl eutectic yielded UCl3 while neptunium and plutonium were prepared as Cs2AnCl6 via precipitation in concentrated aqueous HCl by addition of CsCl. The molar extinction coefficients for U(III), U(IV), Np(IV) and Pu(III) were obtained in LiCl-KCl eutectic at 450 áμ’C. The study of the Np(IV)/Np(III) couple via spectroelectrochemical techniques, enabled the determination of the Np(III) molar extinction coefficients. Uranium was studied in LiCl-KCl eutectic using square wave voltammetry, cyclic voltammetry and chronoabsorptometry. The electrochemical techniques benchmarked the results obtained by spectroelectrochemistry. The results from the different techniques were compared to and explained by determining the Gibbs energy and activation energy of U(III) and U(IV). It was concluded that all the mentioned techniques are suitable for the study of high temperature molten chlorides. Because of its capacity to gather numerous data parameters while minimising the number of experiments required and the quantity of material needed, spectroelectrochemical methods were highlighted as the most promising technique for future studies of radionuclides in high temperature melts.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:756831
Date January 2017
CreatorsLambert, Hugues
ContributorsMartin, Philip ; Sharrad, Clint
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/molten-salt-spectroscopy-and-electrochemistry-for-spent-nuclear-fuel-treatment(89862aa1-a98d-4b5f-9052-91cc9dd4eda3).html

Page generated in 0.013 seconds