Return to search

Should Highly-Skilled Parkinson’s Disease Patients Undergo Deep Brain Stimulation or Thalamotomy?

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a resting tremor combined with varying degrees of rigidity and bradykinesia. Introduced in the 1950s, thalamotomy is used as a surgical procedure to improve brain function in patients and serves as an effective treatment method for the PD tremor where connections within the thalamus are cut. In 1987, deep brain stimulation (DBS), chronic electrical stimulation of deep neural structures using electrodes, was introduced as a clinical treatment for medically refractory tremor in patients with PD. Though thalamotomy has historically been the primary treatment method for PD, an increasing number of patients have chosen to undergo DBS as it has become increasingly touted as an alternative to ablative therapies. The proposed study examines the advantages and disadvantages of both treatment methods to improve cardinal features in highly-skilled, career-oriented PD patients who actively use motor functions in their work. As an alternative to a simple finger-tapping test used for normal PD patients, a more complex strength-dexterity (S-D) test would be performed on 50 skilled patients to evaluate and compare the effectiveness of tremor suppression between both surgeries. The goal of this experiment is to determine which treatment produces the most short-term benefits for the patient to continue with his or her career with minimal future management required. The results of this study will help determine the preferred treatment method when taking into consideration other external factors such as cost, continual management, and preference for short-term vs. long-term results.

Identiferoai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:cmc_theses-3104
Date01 January 2019
CreatorsChen, Alice
PublisherScholarship @ Claremont
Source SetsClaremont Colleges
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceCMC Senior Theses
Rights2018 Alice Chen, default

Page generated in 0.0025 seconds