Return to search

Identifying Categorical Land Use Transition and Land Degradation in Northwestern Drylands of Ethiopia

Land use transition in dryland ecosystems is one of the major driving forces to landscape change that directly impacts the welfare of humans. In this study, the support vector machine (SVM) classification algorithm and cross tabulation matrix analysis are used to identify systematic and random processes of change. The magnitude and prevailing signals of land use transitions are assessed taking into account net change and swap change. Moreover, spatiotemporal patterns and the relationship of precipitation and the Normalized Difference Vegetation Index (NDVI) are explored to evaluate landscape degradation. The assessment showed that 44% of net change and about 54% of total change occurred during the study period, with the latter being due to swap change. The conversion of over 39% of woodland to cropland accounts for the existence of the highest loss of valuable ecosystem of the region. The spatial relationship of NDVI and precipitation also showed R2 of below 0.5 over 55% of the landscape with no significant changes in the precipitation trend, thus representing an indicative symptom of land degradation. This in-depth analysis of random and systematic landscape change is crucial for designing policy intervention to halt woodland degradation in this fragile environment.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-203481
Date08 June 2016
CreatorsZewdie, Worku, Csaplovics, Elmar
ContributorsTechnische Universität Dresden, Fakultät Umweltwissenschaften, MDPI,
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:article
Formatapplication/pdf
SourceRemote sensing, Vol. 8(2016), Article 408, ISSN: 2072-4292

Page generated in 0.0024 seconds