For years, intrusion detection has been considered a key component of many organizations’ network defense capabilities. Although a number of approaches to intrusion detection have been tried, few have been capable of providing security personnel responsible for the protection of a network with sufficient information to make adjustments and respond to attacks in real-time. Because intrusion detection systems rarely have complete information, false negatives and false positives are extremely common, and thus valuable resources are wasted responding to irrelevant events. In order to provide better actionable information for security personnel, a mechanism for quantifying the confidence level in predictions is needed. This work presents an approach which seeks to combine a primary prediction model with a novel secondary confidence level model which provides a measurement of the confidence in a given attack prediction being made. The ability to accurately identify an attack and quantify the confidence level in the prediction could serve as the basis for a new generation of intrusion detection devices, devices that provide earlier and better alerts for administrators and allow more proactive response to events as they are occurring.
Identifer | oai:union.ndltd.org:nova.edu/oai:nsuworks.nova.edu:gscis_etd-2020 |
Date | 01 January 2017 |
Creators | Arthur, Jacob D. |
Publisher | NSUWorks |
Source Sets | Nova Southeastern University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | CEC Theses and Dissertations |
Page generated in 0.0042 seconds