Sistemas elétricos possuem grande influência no desenvolvimento econômico mundial. Dada a importância da energia elétrica para nossa sociedade, os sistemas elétricos frequentemente são alvos de intrusões pela rede causadas pelas mais diversas motivações. Para minimizar ou até mesmo mitigar os efeitos de intrusões pela rede, estão sendo propostos mecanismos que aumentam o nível de segurança dos sistemas elétricos, como novos protocolos de comunicação e normas de padronização. Além disso, os sistemas elétricos estão passando por um intenso processo de modernização, tornando-os altamente dependentes de sistemas de rede responsáveis por monitorar e gerenciar componentes elétricos. Estes, então denominados Smart Grids, compreendem subsistemas de geração, transmissão, e distribuição elétrica, que são monitorados e gerenciados por sistemas de controle e aquisição de dados (SCADA). Nesta dissertação de mestrado, investigamos e discutimos a aplicabilidade e os benefícios da adoção de Redes Definidas por Software (SDN) para auxiliar o desenvolvimento da próxima geração de sistemas SCADA. Propomos também um sistema de detecção de intrusões (IDS) que utiliza técnicas específicas de classificação de tráfego e se beneficia de características das redes SCADA e do paradigma SDN/OpenFlow. Nossa proposta utiliza SDN para coletar periodicamente estatísticas de rede dos equipamentos SCADA, que são posteriormente processados por algoritmos de classificação baseados em exemplares de uma única classe (OCC). Dado que informações sobre ataques direcionados à sistemas SCADA são escassos e pouco divulgados publicamente por seus mantenedores, a principal vantagem ao utilizar algoritmos OCC é de que estes não dependem de assinaturas de ataques para detectar possíveis tráfegos maliciosos. Como prova de conceito, desenvolvemos um protótipo de nossa proposta. Por fim, em nossa avaliação experimental, observamos a performance e a acurácia de nosso protótipo utilizando dois tipos de algoritmos OCC, e considerando eventos anômalos na rede SCADA, como um ataque de negação de serviço (DoS), e a falha de diversos dispositivos de campo. / Power grids have great influence on the development of the world economy. Given the importance of the electrical energy to our society, power grids are often target of network intrusion motivated by several causes. To minimize or even to mitigate the aftereffects of network intrusions, more secure protocols and standardization norms to enhance the security of power grids have been proposed. In addition, power grids are undergoing an intense process of modernization, and becoming highly dependent on networked systems used to monitor and manage power components. These so-called Smart Grids comprise energy generation, transmission, and distribution subsystems, which are monitored and managed by Supervisory Control and Data Acquisition (SCADA) systems. In this Masters dissertation, we investigate and discuss the applicability and benefits of using Software-Defined Networking (SDN) to assist in the deployment of next generation SCADA systems. We also propose an Intrusion Detection System (IDS) that relies on specific techniques of traffic classification and takes advantage of the characteristics of SCADA networks and of the adoption of SDN/OpenFlow. Our proposal relies on SDN to periodically gather statistics from network devices, which are then processed by One- Class Classification (OCC) algorithms. Given that attack traces in SCADA networks are scarce and not publicly disclosed by utility companies, the main advantage of using OCC algorithms is that they do not depend on known attack signatures to detect possible malicious traffic. As a proof-of-concept, we developed a prototype of our proposal. Finally, in our experimental evaluation, we observed the performance and accuracy of our prototype using two OCC-based Machine Learning (ML) algorithms, and considering anomalous events in the SCADA network, such as a Denial-of-Service (DoS), and the failure of several SCADA field devices.
Identifer | oai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/164632 |
Date | January 2007 |
Creators | Silva, Eduardo Germano da |
Contributors | Schaeffer Filho, Alberto Egon |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0059 seconds