A central theme of this dissertation is nervous system plasticity. Activity-dependent plasticity and dopaminergic modulation are two processes by which neural circuits adapt their function to developmental and environmental changes. These processes are involved in basic cognitive functions and can contribute to neurological disorder. An important goal in modern neurobiology is understanding how genotypic variation influences plasticity, and leveraging the quantitative genetics resources in model organisms is a valuable component of this endeavor. To this end I investigated activity-dependent plasticity and dopaminergic modulation in Drosophila melanogaster larvae using neurobiological and genetic approaches.
Larval mechanosensory behavior is described in Chapter 2. The behavioral experiments in that chapter provide a system to study mechanisms of plasticity and decision-making, while the electrophysiological characterization shows that sensory-motor output depends on neural activity levels of the circuit. This system is used to investigate activity-dependent plasticity in Chapter 3, i.e., habituation to repetitive tactile stimuli. In Chapter 4, those assays are combined with pharmacological manipulations, genetic manipulations, and other experimental paradigms to investigate dopaminergic modulation. Bioinformatics analyses were used in Chapter 5 to characterize natural genetic variation and the influence of single nucleotide polymorphisms on dopamine-related gene expression. The impact and suggested future directions based on this work are discussed in Chapter 6.
Dopamine also modulates cardiomyocytes. Chapter 7 describes biochemical pathways that mediate dopaminergic modulation of heart rate. The final two chapters describe neurobiology research endeavors that are separate from my work on dopamine. Experiments that have helped characterize a role for Serf, a gene that codes for a small protein with previously unknown function, are described in Chapter 8. In the final chapter I describe optogenetic behavioral and electrophysiology preparations that are being integrated into high school classrooms and undergraduate physiology laboratories. Assessment of student motivation and learning outcomes in response to those experiments is also discussed.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:biology_etds-1020 |
Date | 01 January 2014 |
Creators | Titlow, Josh S |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Biology |
Page generated in 0.0018 seconds