Return to search

A Deep Learning Approach to Recognizing Bees in Video Analysis of Bee Traffic

Colony Collapse Disorder (CCD) has been a major threat to bee colonies around the world which affects vital human food crop pollination. The decline in bee population can have tragic consequences, for humans as well as the bees and the ecosystem. Bee health has been a cause of urgent concern for farmers and scientists around the world for at least a decade but a specific cause for the phenomenon has yet to be conclusively identified.
This work uses Artificial Intelligence and Computer Vision approaches to develop and analyze techniques to help in continuous monitoring of bee traffic which will further help in monitoring forager traffic. Bee traffic is the number of bees moving in a given area in front of the hive over a given period of time. And, forager traffic is the number of bees entering and/or exiting the hive over a given period of time. Forager traffic is an important variable to monitor food availability, food demand, colony age structure, impact of pesticides, etc. on bee hives. This will lead to improved remote monitoring and general hive status and improved real time detection of the impact of pests, diseases, pesticide exposure and other hive management problems.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8185
Date01 August 2018
CreatorsTiwari, Astha
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0018 seconds