Taguchi methods is also called quality engineering. It is a systematic methodology for product design(modify) and process design(improvement) with the most of saving cost and time, in order to satisfy customer requirement. Taguchi¡¦s parameter design is also known as robust design, which has the merits of low cost and high efficiency, and can achieve the activities of product quality design, management and improvement, consequently to reinforce the competitive ability of business. It is a worthy research course to study how to effectively apply parameter design, to shorten time spending on research, early to promote product having low cost and high quality on sale and to reinforce competitive advantage.
However, the parameter design optimization problems are difficult in practical application owing to (1)complex and nonlinear relationships exist among the system¡¦s inputs, outputs and parameters and (2)interactions may occur among parameters. (3)In Taguchi¡¦s two-phase optimization procedure, the adjustment factor cannot be guaranteed to exist in practice. (4)For some reasons, the data may become lost or were never available. For these incomplete data, the Taguchi¡¦s method cannot treat them well.
Neural networks have learning capacity fault tolerance and model-free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful field including diagnostics, robotics, scheduling, decision-marking, predicition, etc. In the process of searching optimization, genetic algorithm can avoid local optimization. So that it may enhance the possibility of global optimization.
This study had drawn out the key parameters from the spheroidizing theory, and L18, L9 orthogonal experimental array were applied to determine the optimal operation parameters by Signal/Noise analysis. The conclusions are summarized as follows:
1. The spheroidizing of AISI 3130 used to be the highest unqualified product, and required for the second annealing treatment. The operational record before improvement showed 83 tons of the 3130 steel were required for the second treatment. The optimal operation parameters had been defined by L18(61¡Ñ35) orthogonal experimental array. The control parameters of the annealing temperature was at B2
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0206106-093655 |
Date | 06 February 2006 |
Creators | Tsai, Jeh-Hsin |
Contributors | Iuan-yuan Lu, Hsin - Hui Lin, Chao-ton Su |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0206106-093655 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0062 seconds