An isolated hybrid system comprised of a dispatchable and a non-dispatchable power generation sources, is proposed to supply the load of a remote village in the west coast region of The Gambia. The thesis presents an artificial neural network (ANN) based approach to tune the parameters of the frequency regulator in hybrid wind/diesel power system for isolated area power supply. The multi-layer feed-forward ANN with the error back-propagation training is employed to tune the frequency regulator in the simulation of hybrid system under different load and wind conditions. Using MATLAB/Simulink, dynamic simulations are performed to investigate the interaction between these two power sources for the load management, and the voltage and frequency behaviors during wind speed and load variations. Simulation results show that the wind turbine and the diesel generator can be operated suitably in parallel. During simulation, the frequency and voltage regulators used in the proposed hybrid system performed fairly well under wind speed variations and load changing conditions. A good frequency regulator interface, which is around 50Hz is observed for nearly the entire period of operation.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0704111-161507 |
Date | 04 July 2011 |
Creators | Jarjue, Edrissa |
Contributors | Jen-Hao Teng, Whei-Min Lin, Ta-Peng Tsao |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0704111-161507 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0023 seconds