Footings are often founded on multi-layered soil profiles. Real soil profiles are often multi-layered with material constantly varying with depth, which affects the footing response significantly. Furthermore, the properties of the soil are known to vary with location. The spatial variability of soil can be described by random field theory and geostatistics. The research presented in this thesis focuses on quantifying the effect of soil variability on the bearing capacity of rough strip footings on single and two layered, purely-cohesive, spatially variable soil profiles. This has been achieved by using Monte Carlo analysis, where the rough strip footings are founded on simulated soil profiles are analysed using finite element limit analysis. The simulations of virtual soil profiles are carried out using Local Average Subdivision (LAS), a numerical model based on the random field theory. An extensive parametric study has been carried out and the results of the analyses are presented as normalized means and coefficients of variation of bearing capacity factor, and comparisons between different cases are presented. The results indicate that, in general, the mean of the bearing capacity reduces as soil variability increases and the worst case scenario occurs when the correlation length is in the range of 0.5 to 1.0 times the footing width. The problem of estimating the bearing capacity of shallow strip footings founded on multi-layered soil profiles is very complex, due to the incomplete knowledge of interactions and relationships between parameters. Much research has been carried out on single- and two-layered homogeneous soil profiles. At present, the inaccurate weighted average method is the only technique available for estimating the bearing capacity of footing on soils with three or more layers. In this research, artificial neural networks (ANNs) are used to develop meta-models for bearing capacity estimation. ANNs are numerical modelling techniques that imitate the human brain capability to learn from experience. This research is limited to shallow strip footing founded on soil mass consisting of ten layers, which are weightless, purely cohesive and cohesive-frictional. A large number of data has been obtained by using finite element limit analysis. These data are used to train and verify the ANN models. The shear strength (cohesion and friction angle), soil thickness, and footing width are used as model inputs, as they are influencing factors of bearing capacity of footings. The model outputs are the bearing capacities of the footings. The developed ANN-based models are then compared with the weighted average method. Hand-calculation design formulae for estimation of bearing capacity of footings on ten-layered soil profiles, based on the ANN models, are presented. It is shown that the ANN-based models have the ability to predict the bearing capacity of footings on ten-layered soil profiles with a high degree of accuracy, and outperform traditional methods. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1368281 / Thesis (Ph.D.) - University of Adelaide, School of Civil, Environmental and Mining Engineering, 2009
Identifer | oai:union.ndltd.org:ADTP/288508 |
Date | January 2009 |
Creators | Kuo, Yien Lik. |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Page generated in 0.0019 seconds