Biometric identification has already been applied to society today, as today’s mobile phones use fingerprints and other methods like iris and the face itself. With growth for technologies like computer vision, the Internet of Things, Artificial Intelligence, The use of face recognition as a biometric identification on ordinary doors has become increasingly common. This thesis studies is looking into the possibility of replacing regular door locks with face recognition or supplement the locks to increase security by using a pre-trained state-of-the-art face recognition method based on a convolution neural network. A subsequent investigation concluded that a networks based face recognition are is highly vulnerable to attacks in the form of presentation attacks. This study investigates protection mechanisms against these forms of attack by developing a presentation attack detection and analyzing its performance. The obtained results from the proof of concept showed that local binary patterns histograms as a presentation attack detection could help the state of art face recognition to avoid attacks up to 88\% of the attacks the convolution neural network approved without the presentation attack detection. However, to replace traditional locks, more work must be done to detect more attacks in form of both higher percentage of attacks blocked by the system and the types of attack that can be done. Nevertheless, as a supplement face recognition represents a promising technology to supplement traditional door locks, enchaining their security by complementing the authorization with biometric authentication. So the main contributions is that by using simple older methods LBPH can help modern state of the art face regognition to detect presentation attacks according to the results of the tests. This study also worked to adapt this PAD to be suitable for low end edge devices to be able to adapt in an environment where modern solutions are used, which LBPH have.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-42294 |
Date | January 2021 |
Creators | Öberg, Fredrik |
Publisher | Mittuniversitetet, Institutionen för informationssystem och –teknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds