Homography estimation is a fundamental task in many computer vision applications, but many techniques for estimation rely on complicated feature extraction pipelines. We extend research in direct homography estimation (i.e. without explicit feature extraction) by implementing a convolutional network capable of estimating homographies. Previous work in deep learning based homography estimation calculates homographies between pairs of images, whereas our network takes single image input and registers it to a reference view where no image data is available. The application of the work is registering frames from American football video to a top-down view of the field. Our model manages to register frames in a test set with an average corner error equivalent to less than 2 yards. / Homografiuppskattning är ett förkrav för många problem inom datorseende, men många tekniker för att uppskatta homografier bygger på komplicerade processer för att extrahera särdrag mellan bilderna. Vi bygger på tidigare forskning inom direkt homografiuppskattning (alltså, utan att explicit extrahera särdrag) genom att implementera ett Convolutional Neural Network (CNN) kapabelt av att direkt uppskatta homografier. Arbetet tillämpas för att registrera bilder från video av amerikansk fotball till en referensvy av fotbollsplanen. Vår modell registrerar bildramer från ett testset till referensvyn med ett snittfel i bildens hörn ekvivalent med knappt 2 yards.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-209583 |
Date | January 2017 |
Creators | Fristedt, Hampus |
Publisher | KTH, Skolan för datavetenskap och kommunikation (CSC) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds