This master's thesis is focused on segmentation of the scene from traffic environment. The solution to this problem is segmentation neural networks, which enables classification of every pixel in the image. In this thesis is created segmentation neural network, that has reached better results than present state-of-the-art architectures. This work is also focused on the segmentation of the top view of the road, as there are no freely available annotated datasets. For this purpose, there was created automatic tool for generation of synthetic datasets by using PC game Grand Theft Auto V. The work compares the networks, that have been trained solely on synthetic data and the networks that have been trained on both real and synthetic data. Experiments prove, that the synthetic data can be used for segmentation of the data from the real environment. There has been implemented a system, that enables work with segmentation neural networks.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:403816 |
Date | January 2019 |
Creators | Pazderka, Radek |
Contributors | Šůstek, Martin, Rozman, Jaroslav |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.526 seconds