This work focuses on a theoretical explanation of heart rhythm disorders and the possibility of their automatic detection using deep learning networks. For the purposes of this work, a total of 6884 10-second ECG recordings with measured eight leads were used. Those recordings were divided into 5 groups according to heart rhythm into a group of records with atrial fibrillation, sinus rhythms, supraventricular rhythms, ventricular rhythms, and the last group consisted of the others records. Individual groups were unbalanced represented and more than 85 % of the total number of data are sinus rhythm group records. The used classification methods served effectively as a record detector of the largest group and the most effective of all was a procedure consisting of a 2D convolutional neural network into which data entered in the form of scalalograms (classification procedure number 3). It achieved results of precision of 91%, recall of 96% and F1-score values of 0.93. On the contrary, when classifying all groups at the same time, there were no such quality results for all groups. The most efficient procedure seems to be a variant composed of PCA on eight input signals with the gain of one output signal, which becomes the input of a 1D convolutional neural network (classification procedure number 5). This procedure achieved the following F1-score values: 1) group of records with atrial fibrillation 0.54, 2) group of sinus rhythms 0.91, 3) group of supraventricular rhythms 0.65, 4) group of ventricular rhythms 0.68, 5) others records 0.65.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413024 |
Date | January 2020 |
Creators | Sláma, Štěpán |
Contributors | Hejč, Jakub, Ronzhina, Marina |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0014 seconds