This paper discusses design and implementation of classifying system for recognition of musical instruments from audio records with use of Musical Information Retrieval techniques. In the first part, paper describes parameters used for instrument classification, calculation of said parameters from records and reduction of feature vector. Next part is devoted to tuning and implementation of various classifiers with focus on neural networks. These classifiers ar further tested on records from IRMAS dataset wchich contain 11 musical instruments playing solo or with other instruments. Results of classifiers tested on different parameters and different numbers of instruments are discussed in the last part.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:401984 |
Date | January 2019 |
Creators | Kárník, Radoslav |
Contributors | Mucha, Ján, Kiska, Tomáš |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds