This thesis focuses on comparison of selected data mining methods for solving classification tasks with the method of logistic regression. First part of the thesis briefly introduces data mining as a scientific discipline and classification task is shown in the context of knowledge data discovery. Next part explains the principle of particular methods amongst which, along with logistic regression, artificial neural networks, classification decision trees and Support Vector Machine method were selected. Together with mathematical background of each algorithm, demonstration of how the classification functions for new examples is mentioned. Analytical part of this thesis tests decribed methods on real-world data from the Lending Club company and they are compared based on classification accuracy. Towards the end, an evaluation of logistic regression is made in terms of whether its majority position is due to historical reasons or for its high classification accuracy compared to other methods.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:200207 |
Date | January 2013 |
Creators | Tvaroh, Tomáš |
Contributors | Witzany, Jiří, Matejašák, Milan |
Publisher | Vysoká škola ekonomická v Praze |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0014 seconds