This thesis investigates how the neural system instantiates selective attention to speech in challenging acoustic conditions, such as spectral degradation and the presence of background noise. Four studies using behavioural measures, magneto- and electroencephalography (M/EEG) recordings were conducted in younger (20–30 years) and older participants (60–80 years). The overall results can be summarized as follows. An EEG experiment demonstrated that slow negative potentials reflect participants’ enhanced allocation of attention when they are faced with more degraded acoustics. This basic mechanism of attention allocation was preserved at an older age. A follow-up experiment in younger listeners indicated that attention allocation can be further enhanced in a context of increased task-relevance through monetary incentives. A subsequent study focused on brain oscillatory dynamics in a demanding speech comprehension task. The power of neural alpha oscillations (~10 Hz) reflected a decrease in demands on attention with increasing acoustic detail and critically also with increasing predictiveness of the upcoming speech content. Older listeners’ behavioural responses and alpha power dynamics were stronger affected by acoustic detail compared with younger listeners, indicating that selective attention at an older age is particularly dependent on the sensory input signal. An additional analysis of listeners’ neural phase-locking to the temporal envelopes of attended speech and unattended background speech revealed that younger and older listeners show a similar segregation of attended and unattended speech on a neural level. A dichotic listening experiment in the MEG aimed at investigating how neural alpha oscillations support selective attention to speech. Lateralized alpha power modulations in parietal and auditory cortex regions predicted listeners’ focus of attention (i.e., left vs right). This suggests that alpha oscillations implement an attentional filter mechanism to enhance the signal and to suppress noise. A final behavioural study asked whether acoustic and semantic aspects of task-irrelevant speech determine how much it interferes with attention to task-relevant speech. Results demonstrated that younger and older adults were more distracted when acoustic detail of irrelevant speech was enhanced, whereas predictiveness of irrelevant speech had no effect. All findings of this thesis are integrated in an initial framework for the role of attention for speech comprehension under demanding acoustic conditions.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:15-qucosa-186372 |
Date | 04 November 2015 |
Creators | Wöstmann, Malte |
Contributors | Universität Leipzig, Fakultät für Biowissenschaften, Pharmazie und Psychologie, Prof. Jonas Obleser, Prof. Erich Schröger, Prof. Thomas Lunner |
Publisher | Universitätsbibliothek Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0022 seconds