<p>Problem nedostajućih podataka je često prisutan prilikom razvoja<br />prediktivnih modela. Umesto uklanjanja podataka koji sadrže<br />vrednosti koje nedostaju mogu se primeniti metode za njihovu<br />imputaciju. Disertacija predlaže metodologiju za pristup analizi<br />uspešnosti imputacija prilikom razvoja prediktivnih modela. Na<br />osnovu iznete metodologije prikazuju se rezultati primene algoritama<br />mašinskog učenja, kao metoda imputacije, prilikom razvoja određenih,<br />konkretnih prediktivnih modela.</p> / <p>The problem of missing data is often present when developing predictive<br />models. Instead of removing data containing missing values, methods for<br />imputation can be applied. The dissertation proposes a methodology for<br />analysis of imputation performance in the development of predictive models.<br />Based on the proposed methodology, results of the application of machine<br />learning algorithms, as an imputation method in the development of specific<br />models, are presented.</p>
Identifer | oai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)114270 |
Date | 20 July 2020 |
Creators | Vrbaški Dunja |
Contributors | Kupusinac Aleksandar, Doroslovački Ksenija, Ivetić Dragan, Protić Jelica, Stokić Edita, Sladić Goran |
Publisher | Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, University of Novi Sad, Faculty of Technical Sciences at Novi Sad |
Source Sets | University of Novi Sad |
Language | Serbian |
Detected Language | Unknown |
Type | PhD thesis |
Page generated in 0.0019 seconds