Return to search

DEVELOPMENT AND POTENTIAL BEHAVIORAL SIGNIFICANCE OF PRECISE TONOTOPY IN AN INHIBITORY CIRCUIT OF THE AUDITORY BRAINSTEM

Precise neuronal connections are crucial for normal brain function. Often this is accomplished during development, as initially imprecise connections are refined in a manner that depends on neural activity, both spontaneous and sensory-evoked. In the auditory system, many connections are topographically organized according to frequency, or tonotopically, an organizational scheme important for processing information about sound.
In this thesis, I investigated the development of precise tonotopy in the inhibitory connections between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO), a pathway in the auditory brainstem involved in sound localization. Although MNTB-LSO connections exhibit tonotopy from the outset, tonotopic precision increases during development through a process of silencing imprecise inputs and strengthening maintained connections before hearing onset, followed by anatomical pruning after hearing. I teased apart the relationship between functional and anatomical refinement, as well as the degree to which spontaneous and sound-evoked activity play a role in each. Finally, I attempted to link the tonotopic specificity of this circuit to a specific aspect of auditory perception, frequency discrimination.
In Chapter 2, I mapped the tonotopic precision of individual MNTB axons in the LSO over the first three weeks of postnatal development and showed that pruning does not take place before hearing onset, indicating that functional and anatomical refinement take place during distinct developmental periods. In Chapter 3, I showed that anatomical refinement after hearing onset depends on efferent cholinergic transmission in the cochlea, most likely due to its role in patterning pre-hearing spontaneous activity and the functional refinement of connections. In Chapter 4, I showed that eliminating the normal spectrotemporal structure of sound-evoked activity by rearing animals in pulsed white noise does not disrupt pruning. Finally, in Chapter 5, I showed that the loss of tonotopic precision that results from the elimination of cochlear cholinergic transmission is also accompanied by impaired frequency discrimination, providing a link between tonotopic refinement, the efferent system, and auditory perception. I discuss the results in the context of a model of tonotopic refinement and a new role of the efferent system during development.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-03102011-105218
Date16 March 2011
CreatorsClause, Amanda
ContributorsThanos Tzounopoulos, Karl Kandler, Alison Barth, Edda Thiels, Elias Aizenman, Dan Sanes, Erika Fanselow
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-03102011-105218/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.002 seconds