Return to search

The Behavioral and Neurophysiologic Effects of Acute Dopamine Receptor Blockade in the Macaque Striatum

The pathophysiology of Parkinson's disease (PD) has long been attributed to dopamine (DA) loss in the striatum. However, it remains unclear whether simple underactivation of striatal DA receptors is sufficient to induce parkinsonian signs. To test this hypothesis, we performed unilateral infusions of cis-flupenthixol (cis-flu; D1/D2 antagonist) into the macaque putamen, while the macaque performed a reaching task. Twenty-six cis-flu and three saline infusions were performed across three hemispheres in two macaques. Neuronal and local field potential activity was recorded simultaneously from cortex, globus pallidus externa (GPe), and globus pallidus interna (GPi) during most infusions. The reaching task required each macaque to make visually-cued reaching movements to a target for a reward. The macaque was then required to return its hand to a home position without external cues. Injection-related slowing of movement initiation or execution was thought to reflect akinetic- or bradykinetic-like effects, respectively. Following 8/26 cis-flu infusions, macaques exhibited a marked slowing in the initiation of self-generated return movements (95% increase). This was the most severe behavioral effect of cis-flu infusions. The initiation and execution of externally-cued movements were also prolonged following 9/26 and 6/26 injections, but only by 20% and 15% respectively. In general, akinetic-like effects occurred twice as often as bradykinetic-like effects (p<0.05, 2= 4.1). Interestingly, akinetic and bradykinetic effects could be elicited independently. In addition to affecting behavior, intrastriatal DA receptor blockade also reduced resting and peri-movement activity in the cortex and suppressed resting GPe activity. Burstiness, synchrony, and oscillatory activity in cortex were increased following intrastriatal DA receptor blockade as well. Oscillatory activity was also increased in the GPe and GPi. In conclusion, suppression of striatal DA activity was sufficient to induce akinetic-like signs, most severely affecting movement initiation during self-generated movements. Furthermore, distinct parkinsonian-like signs could be elicited independently, suggesting that separate signs may have unique pathophysiologic substrates. Intrastriatal DA receptor blockade also induced changes in cortical and BG activity that were consistent with findings in the parkinsonian state. Interestingly, many of these neuronal activity changes were specific to cortex, implicating an important role for cortical activity in the development of akinetic parkinsonian signs.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-03222011-131824
Date22 March 2011
CreatorsChan, Vanessa Suzanne
ContributorsSarah Berman, Marc Sommer, Philip Starr, Charles Bradberry, Amy Wagner, Robert Turner
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-03222011-131824/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds