Return to search

Perturbation de la migration des interneurones GABAergiques corticaux dans un modèle murin d'encéphalopathie épileptogène associée au gène PIGB et aux ancres glycoprotéiques

Des variants récessifs touchant le gène PIGB, encodant une enzyme impliquée dans la biosynthèse des ancres GPI, ont récemment été décrits chez des patients présentant une déficience héritée des ancres GPI ainsi qu’une encéphalopathie épileptogène (EE), une forme d’épilepsie infantile sévère associée à des atteintes cognitives. Chez l’humain, plus de 150 protéines, dont certaines sont critiques pour la fonction neuronale, sont localisées à la membrane cellulaire grâce aux ancres GPI. Des données préliminaires du laboratoire Rossignol démontrent que la délétion embryonnaire du gène Pigb dans les interneurones GABAergiques (IN) dérivés de l’éminence ganglionnaire médiale (MGE) est suffisante pour induire des crises d’épilepsie spontanées et des déficits cognitifs chez la souris, suggérant un rôle critique de PIGB dans le développement de l’inhibition corticale. Toutefois, les mécanismes cellulaires et moléculaires sous-tendant les phénotypes cliniques associés aux délétions du gène PIGB sont inconnus. Compte tenu du rôle central joué par les molécules de guidage, dont certaines sont des protéines à ancrage GPI, lors de la migration des IN vers la plaque corticale, nous postulons que la perte sélective des ancres GPI, résultant d’une délétion conditionnelle de Pigb dans les IN, altère leur dynamique de migration, ce qui a pour conséquence de réduire leur nombre dans le cortex postnatal, menant à une désinhibition corticale et au développement de l’épilepsie.
L’imagerie en temps réel d’explants cellulaires de MGE a révélé que la perte de fonction du gène Pigb dans les IN dérivés du MGE entraine un défaut de la migration tangentielle et des anomalies morphologiques se traduisant par une réduction de la densité des IN dans le cortex postnatal. Nous avons également démontré que la signalisation motogène EphA4-éphrineA2 est altérée dans les IN déficients en ancres GPI, contribuant au délai de migration observé.
En somme, nos travaux ont permis de préciser les mécanismes physiopathologiques sous-tendant les EE associées à des variants pathogéniques du gène PIGB et d’approfondir notre compréhension du rôle des ancres GPI durant le neurodéveloppement et plus précisément, durant la migration des IN. / Recessive variants in the PIGB gene, encoding an enzyme involved in the biosynthesis pathway of GPI anchors, were recently described in children with an inherited GPI anchor defect and epileptic encephalopathy (EE), a neurodevelopmental disorder characterized by early-onset epilepsy with cognitive impairment. GPI anchors are critical for the membrane attachment of at least 150 human proteins, some of which are important for proper neuronal function. Preliminary data from the Rossignol group show that the embryonic deletion of Pigb in GABAergic interneurons (INs) emanating from the medial ganglionic eminence (MGE) causes spontaneous seizures and cognitive deficits in mice, suggesting a critical role of PIGB in the establishment of cortical inhibition. However, the cellular and molecular mechanisms leading to epilepsy remain unknown. Given the central role of guidance molecules, some of which are GPI-anchored proteins, during neuronal migration, we postulate that loss of GPI anchors following the conditional deletion of Pigb in MGE-derived INs disrupts chemotactic guidance and IN migration dynamics, leading to cortical disinhibition and epilepsy post-natally.
Time-lapse live imaging of MGE explants revealed that the targeted deletion of Pigb impairs the tangential migration as well as the morphological development of MGE-derived INs, resulting in reduced IN densities in the postnatal cortex. We showed that the kinetic deficits are partly due to a loss of EphA4-ephrinA2 motogenic signaling in PigbcKO INs.
In summary, our work helps clarify the physiopathology underlying PIGB associated-EE and deepens our understanding of the roles of GPI-anchor-related pathways in neurodevelopment and more specifically, in the migration of cortical INs.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32485
Date08 1900
CreatorsToudji, Ikram
ContributorsRossignol, Elsa
Source SetsUniversité de Montréal
Languagefra
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.002 seconds