Return to search

The role of alpha synuclein in Parkinson's disease

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. It is characterized by the presence of intracellular inclusions termed Lewy bodies (LBs) and Lewy neuritis (LNs) in the brain, in which α-Syn aggregates constitute the main component. Therefore, α-Syn aggregation was implicated in the pathogenesis of PD. Structurally α-Syn is a disordered protein with little ordered structure under physiological conditions. However, research of α-Syn has provided substantial information about its structural properties. The precise function of α-Syn is still under investigation. Research has also shown that metals, such as copper and iron, accelerate α-Syn aggregation and fibrillation in vitro and are proposed to play an important role in vitro. In this study, isothermal titration calorimetry was used to determine iron binding properties to α-Syn revealing the presence of two binding sites for iron with an affinity of 1.06 x 105 M-1 and a dissociation constant of ~ 10μM which is physiologically relevant to iron content in the brain. In addition, α-Syn was found to reduce iron in the presence of copper. This property was demonstrated via ferrozine based assay. In vitro, thoflavin-T fluorescence assay was used to investigate the mechanism by which metals induce α-Syn aggregation and whether it is related to metal binding. Metals, mainly copper and iron, caused 2-fold increase in the aggregation rate of WT α-Syn and its metal binding mutants. Linking that to the increased metal content in the brain, α-Syn aggregation can cause changes in tissue composition, thus altering the normal functional environment in the brain. Moreover, western blotting analysis showed that copper increases the aggregate formation in mammalian dopaminergic cells over-expressing α-Syn.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:555747
Date January 2011
CreatorsMoualla, Dima
ContributorsBrown, David
PublisherUniversity of Bath
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0022 seconds