Return to search

Influence of the immune system on peripherally acquired transmissible spongiform encephalopathy infection with special reference to the role of the follicular dendritic cell

The Transmissible Spongiform Encephalopathies (TSEs) or “prion” diseases are a group of fatal neurodegenerative diseases the aetiology of which is not fully understood. These diseases are characterised by a number of pathological changes in the central nervous system (CNS) including; vacuolation of the neuropil, gliosis and deposition of PrPSc; the abnormal form of the host glycoprotein PrP. Although the major pathology in these diseases is associated with the CNS the immune system is central to the pathogenesis of many natural and experimental TSEs including natural scrapie in sheep, chronic wasting disease in free ranging and captive deer and variant CJD (vCJD) in humans. Unlike many infectious diseases where deficiencies in immune function are opportunistic for the invading pathogen a competent immune system is required for efficient TSE infection via peripheral routes. As infection of the lymphoid tissues in many TSEs can occur many months before the detection of infectivity in the CNS, the determination of those cells in the lymphoid system has been the focus of much research and a number of studies now point towards the importance of the follicular dendritic cell (FDC), a long-lived radio resistant cell, in TSE pathogenesis. The involvement of FDCs in peripheral TSE pathogenesis relates to the inability of ionising radiation to influence pathogenesis, the association of PrP protein with FDCs in both uninfected and infected lymphoid tissues, and the demonstration that TSE pathogenesis is severely impaired in mice devoid of these cells. The aims of this thesis were to further understand the role of FDCs in the pathogenesis of a range of mouse-adapted experimental TSE strains and to determine if peripherally acquired TSE infections are influenced by host age or by stimulation of the immune system. Using chimaeric mouse models where a mismatch in the expression of PrP protein between FDCs and lymphoid/myeloid cells was produced, further evidence for a critical role for in the pathogenesis of the ME7 TSE strain was produced. Although these findings produced strong evidence that FDCs were important for the ME7 strain the possibility that different TSE strains may target different cell types in the peripheral lymphoid system was explored using a range of mice with specific immunological defects. Infection of these mice with several experimental TSE strains showed that the presence of mature FDCs was also important for the pathogenesis of the strains tested. Clinical cases of vCJD have been confined almost exclusively to young adults, although the reasons behind this apparent age-related susceptibility are not fully understood. The capacity of the immune system to mediate immune responses to pathogens declines with age as a result of impaired lymphocyte and FDC function. As FDCs are critically involved in the pathogenesis of many TSEs, including vCJD, it was hypothesised that an aging immune system may impair disease pathogenesis. Peripheral infection of senescent mice failed to produce clinical disease during lifespan, although evidence of disease transmission, was detected in a proportion of aged mice. These findings demonstrate that this inefficient disease transmission, as a consequence of age, may lead to considerable levels of sub-clinical disease within the population. Finally the influence of immune system stimulation, by the generation of a humoral immune response, on peripheral TSE pathogenesis was investigated. These findings demonstrated that immunisation can influence pathogenesis, but only during the early stages of infection prior to spread to the CNS. These data imply that modulation of the immune system does not alter TSE pathogenesis once disease has been initiated in the CNS. Finally, these studies have found some preliminary evidence that TSE infection may induce FDC activation suggesting that TSE infection may influence the immune response. Together, these data show that a functional immune system and specifically, the presence of mature FDCs, are central to the pathogenesis of peripherally acquired TSE infections.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562707
Date January 2009
CreatorsBrown, Karen L.
ContributorsBruce, Moira. : Gray, David. : Mabbott, Neil
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/4376

Page generated in 0.0019 seconds