Return to search

Avaliação de métodos de previsão de cargas elétricas em curto prazo para aplicação em sistemas de distribuição inteligentes / Evaluation of methods for prevision of loadsin electrical short term for application in distribuction system intelligent

In Electric Power Systems understand the future behavior of electric loads is crucial to make a decision. The long, medium and short term load forecast is essential power systems. Considering the gradual transformation of the traditional distribution systems to smart grids, where the electric system automation and online communication are effective, the forecast in very short term gets new challenges. Based on these facts, the objective of this thesis is to identify the most appropriate methods to accomplish these forecasts to contribute to decision-making in distribution systems operation. Various techniques of forecasting and simulations in different methods were studied, in order to identify which of these offers the best results regarding demand the forecast in the very short term. The quantities considered to make predictions and, which have more relevance to the horizon under study are electrical and climate. The methods used in the simulations were the Artificial Neural Networks (ANN) type recurrent Elman e NARX and Neurofuzzy. / Em Sistemas Elétricos de Potência conhecer o comportamento futuro das cargas elétricas é de fundamental importância para tomada de decisões. A previsão de cargas elétricas é essencial nos horizontes de longo, médio, curto e curtíssimo prazo. Tendo em vista a gradual transformação dos sistemas de distribuição tradicionais para sistemas inteligentes de distribuição, onde a automação do sistema elétrico e a comunicação online estejam efetivas, a previsão no curtíssimo prazo ganha novos desafios. Com base nesses fatos esta dissertação busca identificar os métodos mais adequados para realizar essas previsões de forma a contribuir com a tomada de decisões na operação dos sistemas de distribuição de energia elétrica. Foram estudadas várias técnicas de previsão e realizadas simulações em diferentes métodos de forma a identificar qual desses apresenta melhor resultado com relação à previsão de demanda no curtíssimo prazo. As grandezas consideradas para realizar as previsões e que apresentam maior relevância para o horizonte em estudo são elétricas e climáticas. Os métodos utilizados nas simulações foram as Redes Neurais Artificiais (RNAs) do tipo recorrente Elman e NARX e Neurofuzzy.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufsm.br:1/8532
Date09 August 2013
CreatorsGarcia, Lidia Maria Dutra
ContributorsCanha, Luciane Neves, Comassetto, Lorenzo, Abaide, Alzenira da Rosa
PublisherUniversidade Federal de Santa Maria, Programa de Pós-Graduação em Engenharia Elétrica, UFSM, BR, Engenharia Elétrica
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSM, instname:Universidade Federal de Santa Maria, instacron:UFSM
Rightsinfo:eu-repo/semantics/openAccess
Relation300400000007, 400, 500, 300, 300, 500, ab53fdc5-93b0-417d-b96d-9442b235a1ff, a2fe44d6-4d4e-4809-8e15-2d93c60475be, 9e2ab7ad-7b12-4fbd-a1e1-7aa79d3ac8b1, 95bc451a-862e-45df-ac82-08282d9ab91d

Page generated in 0.0024 seconds