Return to search

Identicação de sistemas neurais com redes bayesianas dinâmicas e transferência de entropia / Neural systems identification with dynamic bayesian networks and transfer entropy

Redes Bayesianas Dinâmicas (DBNs) são modelos capazes de representar um sistema dinâmico por meio de uma rede complexa que codifica as independências estatísticas condicionais entre os seus estados internos. Entre seus métodos de aprendizagem estrutural a partir de dados, o uso daqueles baseados em teoria de informação têm ganhado bastante espaço nos últimos anos, devido às suas vantages de serem livres de modelo e permitirem uma aprendizagem offline a partir de medidas em múltiplas repetições do experimento. No entanto, resta uma exploração dos paralelos entre a área de aprendizagem de DBNs e aquela interessada em realizar medidas de transferência de informação entre elementos de um sistema neural, principalmente por meio de transferência de entropia (TE). O presente trabalho busca, assim, aproximar estes dois focos de pesquisa, identificando suas equivalências e tratando de alguns dos desafios relacionados à sua implementação em identificação de sistemas neurais. Nota-se que uma das maiores dificuldades relacionadas ao uso de teoria de informação em sistemas multivariados concerne a alta dimensionalidade das funções de distribuição de probabilidade, exigindo grandes quantidades de dados observados simultaneamente. Não obstante, a aplicação de DBNs e transferência de entropia em sistemas de tempo contínuo também envolve considerações sobre a discretização dos sistemas no tempo, o que implica na necessidade de relaxamento da suposição da propriedade de Markov de primeira ordem (presente na definição de DBNs), e leva, assim, à proposta de redes Bayesianas dinâmicas de altas ordens (HO-DBNs). Além de realizar uma revisão das principais propostas para a solução destas dificuldades, o trabalho primeiramente propõe que, sob a suposição de um sistema com elementos se comportando de forma igual, os valores das medidas baseadas em teoria de informação com baixa dimensionalidade podem ser utilizados para a aprendizagem de estruturas de rede. Isso é mostrado a partir do uso de informação mútua par a par para a aprendizagem de redes Bayesianas simuladas com distribuições de probabilidade condicional fixas. No que concerne o uso de HO-DBNs, também se propõe um algoritmo baseado em otimização por enxame de partículas (PSO) para percorrer o espaço de busca de estruturas de HO-DBNs de forma mais eficiente. Em seguida, duas aplicações de modelagem de DBNs com uso de teoria de informação são exploradas na área de sistemas neurais, tendo em vista a obtenção de conhecimento acerca de conectividade funcional e até uma aplicação futura em engenharia bioinspirada. Os desafios apresentados anteriormente são, assim, exemplificados, junto com algumas propostas de solução. A primeira área diz respeito à elicitação de conectividade funcional entre as sub-áreas do hipocampo, no cérebro humano, a partir de dados de ressonância magnética funcional (fMRI) de alta resolução. A partir de uma análise seed-to-voxel em grupo, regiões de interesse (ROIs) são identificadas e um modelo inicial de DBN é proposto, que é coerente com alguns estudos já feitos na literatura. A segunda área de aplicação concerne a conectividade neural do sistema neuromotor do gafanhoto, a partir de gravações intracelulares de potencial sináptico em neurônios sensores, motores e interneurônios, sob estimulação com um fórceps no órgão femoral cordotonal (FeCO). Embora um modelo completo de DBN ainda não seja possível devido à ausência de gravações simultâneas suficientes, os atrasos de transferência de entropia entre o estímulo e a resposta nos neurônios motores são obtidos e integrados a partir de uma análise Bayesiana, dado também um pré-processamento com análise de espectro singular (SSA) que, ao remover a não-estacionariedade do sinal (que se deve a fatores extrínsecos ao sistema), aumentou consideravelmente a quantidade de amostras disponíveis. Tais resultados, ao ajudar a reduzir o espaço de busca de DBNs, também servem para direcionar futuros experimentos e pesquisas na área. / Dynamic Bayesian Networks (DBNs) are models capable of representing a dynamical system by means of a complex network which codifies statistical conditional independencies between their internal states. Among their strucutural learning methods based on data, the use of ones based on information theory are gaining ground in recent years, due to their advantages of being model-free and permitting offline learning from multiple repetitions of an experiment. However, there still remains an exploration of the parallels between the areas of DBN structure learning and those interested in obtaining measures of information transfer between elements of neural systems, mainly through transfer entropy (TE). Thus, the current work seeks to approximate these two foci of research by identifying some of their equivalences and challenges related to their usage in neural systems identification. It is noted that one of the main difficulties related to the use of information theory in multivariate neural systems concerns the high dimensionality of the probability distribution functions, requiring thus great quantities of data observed simultaneously. Furthermore, the application of DBNs and transfer entropy on continuous time systems also involves considerations about their discretization on time, which implies the necessity of relaxing the first order Markov property (instrinsinc to the definition of DBNs), and thus leads to the proposal of high-order dynamic Bayesian networks (HO-DBNs). Besides performing a review on the main proposals for solving these difficulties, this work first proposes that, under the supposition of a system with elements behaving in a similar way, the values of information theory based measures with low dimensions can be employed for learning network structures. This is shown with the use of pairwise mutual information for learning simulated Bayesian networks with fixed conditional probability distributions. And concerning the use of HO-DBNs, an algorithm based on PSO is proposed in order to pass through their search space more efficiently. Next, two applications of DBN modeling with information theory are explored in the field of neural systems, in view of obtaining knowledge about functional connectivity and even of a future application of bioinspired engineering. The challenged presented earlier are then exemplified along with some proposals of solutions. The first field regards the elicitation of functional connectivity between hippocampal subfields on the human brain based of high resolution fMRI data. Starting from a seed-to-voxel group analysis, regions of interest (ROIs) are identified and an initial DBN model is proposed, which is coherent with some studies already conducted in the literature. The second field of application concerns the neural connectivity between the neuromotor system of the locust, based on intracellular synaptic potential recordings on sensory neurons, interneurons and motor neurons under stimulation by a forceps in the femoral chordotonal organ (FeCO). Although a complete DBN model is still not possible due to the absence of sufficient and simultaneous recordings, the transfer entropy delays between stimulus and responses on the motor neuros are obtained and integrated by a Bayesian analysis, given also a pre-processing based on Singular Spectrum Analysis (SSA) which, by removing the nonstationarity characteristics of the signal (which are due to extrinsic factors on the system), considerably increased the number of available samples for learning. Such results, by helping to reduce the search space of DBNs, also direct further experiments and studies on this field.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-18042017-164144
Date04 April 2017
CreatorsSantos, Fernando Pasquini
ContributorsMaciel, Carlos Dias
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0019 seconds