Return to search

A Novel Dual Modeling Method for Characterizing Human Nerve Fiber Activation

Presented in this work is the investigation and successful illustration of a coupled model of the human nerve fiber. SPICE netlist code was utilized to describe the electrical properties of the human nervous membrane in tandem with COMSOL Multiphysics, a finite element analysis software tool. The initial research concentrated on the utilization of the Hodgkin-Huxley electrical circuit representation of the nerve fiber membrane. Further development of the project identified the need for a linear circuit model that more closely resembled the McNeal linearization model augmented by the work of Szlavik which better facilitated the coupling of both SPICE and COMSOL programs. Related literature was investigated and applied to validate the model. This combination of analysis tools allowed for the presentation of a consistent model and revealed that a coupled model produced not only a qualitatively comparable, but also a quantitatively comparable result to studies presented in the literature. All potential profiles produced during the simulation were compared against the literature in order to meet the purpose of presenting an advanced computational model of human neural recruitment and excitation. It was demonstrated through this process that the correct usage of neuron models within a two dimensional conductive space did allow for the approximate modeling of human neural electrical characteristics.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2427
Date01 December 2014
CreatorsSugden, Frank Daniel
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.002 seconds