Improved knowledge of human nerve function and recruitment would enable innovation in the Biomedical Engineering field. Better understanding holds the potential for greater integration between devices and the nervous system as well as the ability to develop therapeutic devices to treat conditions affecting the nervous system. This work presents a three-dimensional volume conductor model of the human arm for coupling with code describing nerve membrane characteristics. The model utilizes an inhomogeneous medium composed of bone, muscle, skin, nerve, artery, and vein. Dielectric properties of each tissue were collected from the literature and applied to corresponding material subdomains. Both a fully anatomical version and a simplified version are presented. The computational model for this study was developed in COMSOL and formatted to be coupled with SPICE netlist code. Limitations to this model due to computational power as well as future work are discussed. The final model incorporated both anatomically correct geometries and simplified geometries to enhance computational power. A stationary study was performed implementing a boundary current source through the surface of a conventionally placed electrode. Results from the volume conductor study are presented and validated through previous studies.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2488 |
Date | 01 March 2015 |
Creators | Fischer, Shain Ann |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.012 seconds