Return to search

Neuronal representation and processing of chemosensory communication signals in the ant brain

Ants heavily rely on olfaction for communication and orientation and ant societies are characterized by caste- and sex-specific division of labor. Olfaction plays a key role in mediating caste-specific behaviours. I investigated whether caste- and sex-specific differences in odor driven behavior are reflected in specific differences and/or adaptations in the ant olfactory system. In particular, I asked the question whether in the carpenter ant, Camponotus floridanus, the olfactory pathway exhibits structural and/or functional adaptations to processing of pheromonal and general odors. To analyze neuroanatomical specializations, the central olfactory pathway in the brain of large (major) workers, small (minor) workers, virgin queens, and males of the carpenter ant C. floridanus was investigated using fluorescent tracing, immunocytochemistry, confocal microscopy and 3D-analyzes. For physiological analyzes of processing of pheromonal and non-pheromonal odors in the first odor processing neuropil , the antennal lobe (AL), calcium imaging of olfactory projection neurons (PNs) was applied. Although different in total glomerular volumes, the numbers of olfactory glomeruli in the ALs were similar across the female worker caste and in virgin queens. Here the AL contains up to ~460 olfactory glomeruli organized in 7 distinct clusters innervated via 7 antennal sensory tracts. The AL is divided into two hemispheres regarding innervations of glomeruli by PNs with axons leaving via a dual output pathway. This pathway consists of the medial (m) and lateral (l) antenno-cerebral tract (ACT) and connects the AL with the higher integration areas in the mushroom bodies (MB) and the lateral horn (LH). M- and l-ACT PNs differ in their target areas in the MB calyx and the LH. Three additional ACTs (mediolateral - ml) project to the lateral protocerebrum only. Males had ~45% fewer glomeruli compared to females and one of the seven sensory tracts was absent. Despite a substantially smaller number of glomeruli, males possess a dual PN output pathway to the MBs. In contrast to females, however, only a small number of glomeruli were innervated by projection neurons of the m-ACT. Whereas all glomeruli in males were densely innervated by serotonergic processes, glomeruli innervated by sensory tract six lacked serotonergic innervations in the female castes. It appears that differences in general glomerular organization are subtle among the female castes, but sex-specific differences in the number, connectivity and neuromodulatory innervations of glomeruli are substantial and likely to promote differences in olfactory behavior. Calcium imaging experiments to monitor pheromonal and non-pheromonal processing in the ant AL revealed that odor responses were reproducible and comparable across individuals. Calcium responses to both odor groups were very sensitive (10-11 dilution), and patterns from both groups were partly overlapping indicating that processing of both odor classes is not spatially segregated within the AL. Intensity response patterns to the pheromone components tested (trail pheromone: nerolic acid; alarm pheromone: n-undecane), in most cases, remained invariant over a wide range of intensities (7-8 log units), whereas patterns in response to general odors (heptanal, octanol) varied across intensities. Durations of calcium responses to stimulation with the trail pheromone component nerolic acid increased with increasing odor concentration indicating that odor quality is maintained by a stable pattern (concentration invariance) and intensity is mainly encoded in the response durations of calcium activities. For n-undecane and both general odors increasing response dynamics were only monitored in very few cases. In summary, this is the first detailed structure-function analyses within the ant’s central olfactory system. The results contribute to a better understanding of important aspects of odor processing and olfactory adaptations in an insect’s central olfactory system. Furthermore, this study serves as an excellent basis for future anatomical and/or physiological experiments. / Für Ameisen spielt die olfaktorische Kommunikation und Orientierung eine zentrale Rolle hinsichtlich der Organisation des Ameisenstaates. Ob sich kasten- und geschlechtsspezifische Verhaltensunterschiede auf neuronaler Ebene und besonders im olfaktorischen System der Ameise widerspiegeln ist die zentrale Frage meiner Arbeit. Im Speziellen stellte ich die Frage, ob sich in der olfaktorischen Bahn der Rossameise Camponotus floridanus strukturelle oder funktionelle Anpassungen an die Verarbeitung von Pheromonen und generellen Düften aufzeigen lassen. Zur Analyse hinsichtlich neuroanatomischer Spezialisierungen wurde die olfaktorische Bahn im Gehirn von großen und kleinen Arbeiterinnen, Jungköniginnen und Männchen der Rossameise C. floridanus mittels Fluoreszenzmassenfärbungen, Immunzytochemie, konfokaler Laserscanningmikroskopie und 3D-Auswertung untersucht. Um die Verarbeitung von Pheromonen und generellen Düften im primären olfaktorischen Neuropil, dem Antennallobus (AL), auf physiologischer Ebene zu charakterisieren wurden olfaktorische Projektionsneurone mittels Calcium Imaging untersucht. Obwohl sich das glomeruläre Gesamtvolumen der ALs zwischen Arbeiterinnenkasten und Jungköniginnen unterscheidet, lag die Gesamtzahl der Glomeruli im AL in einem ähnlichen Bereich. Der AL besteht in allen drei weiblichen Kasten aus bis zu 460 Glomeruli, die in sieben Clustern angeordnet sind und von sieben sensorischen Eingangstrakten innerviert werden. Der AL unterteilt sich in zwei Hemispheren, deren entsprechende Glomeruli von Projektionsneuronen innverviert werden, die vom AL über die Nervenbahn des “dual output pathway” in höhere Hirnregionen projizieren. Diese Nervenbahn besteht aus dem medialen (m) und lateralen (l) Antennocerebraltrakt (ACT) und verbindet den AL mit höheren Integrationszentren wie den Pilzkörpern (MB) und dem lateralen Horn (LH). M- und l-ACT unterscheiden sich in ihren Zielregionen im MB Calyx und dem LH. Drei weitere ACTs (mediolateral – ml) projizieren ausschließlich ins laterale Protocerebrum. Männchen besitzen ca. 45% weniger Glomeruli im Vergleich zur Weibchenkaste. Ihnen fehlt weiterhin einer der sieben sensorischen Eingangstrakte vollständig. Trotz der wesentlich geringeren Anzahl an Glomeruli, besitzen auch Männchen den “dual output pathway”. Im Gegensatz zu den Weibchen ist allerdings nur eine geringe Anzahl an Glomeruli durch m-ACT Projektionsneurone innerviert. Ein weiterer Unterschied im AL von Männchen und Weibchen findet sich in den Glomeruli des sensorische Trakts Nummer sechs, die bei Weibchen keinerlei serotonerge Innervierung aufweisen während beim Männchen der gesamte AL dichte serotonerge Verzweigungen besitzt. Es zeigt sich somit, dass die kastenspezifischen Unterschiede in der allgmeinen glomerulären Organisation des AL innerhalb der Weibchenkaste nur sehr fein sind. Im Gegensatz dazu sind die geschlechtsspezifischen Unterschiede in Anzahl, Konnektivität und neuromodulatorischer Innervierung von Glomeruli zwischen Weibchen- und Männchen wesentlich ausgeprägter was Unterschiede in olfaktorisch geprägten Verhaltensweisen begünstigen könnte. Die Calcium Imaging Experimente zur Untersuchung der Verarbeitung von Pheromonen und generellen Düften im AL der Ameise zeigten, dass Duftantworten reproduzierbar und zwischen Individuen vergleichbar waren. Die Sensitivität des Calcium Signals lag für beide Duftgruppen in einem sehr niedrigen Bereich (Verdünnung 10-11). Die Antortmuster beider Duftgruppen überlappten zum Teil, was die Annahme zuläßt, dass die Verarbeitung von Pheromonen und generellen Düften keiner räumlichen Trennung innerhalb des AL unterliegt. Die Intensität der Antwortmuster auf die Pheromonkomponenten (Spurpheromon: Nerolsäure; Alarmpheromon: n-Undecan) blieben in den meisten Fällen über einen weiten Konzentrationsbereich konstant (7-8 log Einheiten). Die Dauer der Calciumantwort nach Stimulation mit Nerolsäure verlängerte sich mit steigender Duftkonzentration. Dies läßt für das Spurpheromon den Schluß zu, dass die Duftqualität in einem konstanten Duftmuster (Konzentrationsinvarianz) repräsentiert und die Duftintensität über die Dauer des Calciumsignals abgebildet wird. Da die Antwortmuster auf generelle Düfte (Heptanal, Octanol) dagegen sehr viel stärker innerhalb des getesteten Konzentrationsbereichs varrieren ließ sich für n-Undecan und die beiden generellen Düfte eine solche Dynamik nur in einigen wenigen Fällen beobachtet. Zusammenfassend ist diese Studie die erste strukturelle und funktionelle Studie des olfaktorischen Systems der Ameise. Die Ergebnisse tragen zu einem besseren Verständnis der neuronalen Adaptationen und Mechanismen hinsichtlich Duftverarbeitung im zentralen Nervensystem von Insekten bei. Außerdem liefert diese Studie eine wichtige Grundlage für zukünftige neuroanatomische und –physiologische Untersuchungen auf dem Gebiet der Neurobiologie der Insekten.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2603
Date January 2008
CreatorsZube, Christina
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds