Return to search

Dirbtinių neuroninių tinklų kolektyvų formavimo algoritmų kūrimas / Algorithms development for creation of artificial neural network committees

Previous works on classification committees have shown that an efficient committee should consist of networks that are not only very accurate, but also diverse. In this work, aiming to explore trade-off between the diversity and accuracy of committee networks, the steps of neural network training, aggregation of the networks into a committee, and elimination of irrelevant input variables are integrated. To accomplish the elimination, an additional term to the Negative correlation learning error function, which forces input weights connected to the irrelevant input variables to decay, is added.

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2005~D_20050526_062729-44266
Date26 May 2005
CreatorsCibulskis, Vladas
ContributorsMaciulevičius, Stasys, Barauskas, Rimantas, Lipnickas, Arūnas, Telksnys, Laimutis, Plėštys, Rimantas, Gelžinis, Adas, Pranevičius, Henrikas, Mockus, Jonas, Verikas, Antanas, Jasinevičius, Raimundas, Kaunas University of Technology
PublisherLithuanian Academic Libraries Network (LABT), Kaunas University of Technology
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageEnglish
TypeMaster thesis
Formatapplication/pdf
Sourcehttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050526_062729-44266
RightsUnrestricted

Page generated in 0.178 seconds