Return to search

Evaluating use of Domain Adaptation for Data Augmentation Applications : Implementing a state-of-the-art Domain Adaptation module and testing it on object detection in the landscape domain. / Utvärdering av användningen av domänanpassning för en djupinlärningstillämpning : Implementering av en toppmodern domänanpassningsmodul och testning av den på objektdetektion i en landskapsdomän.

Machine learning models are becoming popular in the industry since the technology has developed to solve numerous problems, such as classification [1], detection [2], and segmentation [3]. These algorithms require training with a large dataset which includes correct class labels to perform well on unseen data. One way to get access to large sets of annotated data is to use data from simulation engines. However this data is often not as complex and rich as real data, and for images, for examples, there can be a need to make these look more photorealistic. One approach to do this is denoted Domain adaptation. In collaboration with SAAB Aeronautics, which funds this research, this study aims to explore available domain adaptation frameworks, implement a framework and use it to make a transformation from simulation to real- life. A state-of-the-art framework CyCADA was re-implemented from scratch using Python and TensorFlow as a Deep Learning package. The CyCADA implementation was successfully verified by reproducing the digit adaptation result demonstrated in the original paper, making domain adaptations between MNIST, USPS, and SVHN. CyCADA was used to domain adapt landscape images from simulation to real-life. Domain-adapted images were used to train an object detector to evaluate whether CyCADA allows a detector to perform more accurately in real-life data. Statistical measurements, unfortunately, showed that domain-adapted images became less photorealistic with CyCADA, 88.68 FID on domain-adapted images compared to 80.43 FID on simulations, and object detection performed better on real-life data without CyCADA, 0.131 mAP with a detector trained on domain-adapted images compared to 0.681 mAP with simulations. Since CyCADA produced effective domain adaptation results between digits, there remains a possibility to try multiple hyperparameter settings and neural network architecture to produce effective results with landscape images. / Denna studie genomfördes i ett samarbete med SAAB Aeronautics och handlar om att utveckla en Domain Adaptation-modul som förbättrar prestandan av ett nätverk för objektdetektering. När ett objektdetekteringsnätverk är tränat med data från en domän så är det inte givet att samma nätverk presterar bra på en annan domän. Till exempel, ritningar och fotografier av frukter. Forskare löser problemet genom att samla data från varje domän och träna flera maskininlärningsalgoritmer, vilket är en lösning som kräver tid och energi. Detta problem kallas för domänskiftesproblem. Ett hett ämne inom djupinlärning handlar om att lösa just detta problem med domänskift och det finns en rad algoritmer som faller i kategorin Domain Adaptation. Denna studie utvecklar CyCADA som metod att evaluera en toppmodern Domain Adaptation-algoritm. Återimplementering av CyCADA blev lyckad, eftersom flera resultat var återskapade från den originala artikeln. CyCADA producerade effektiva domänskiften på bilder av siffror. CyCADA användes med landskapsbilder från en simulator för att öka verklighetsförankringen på bilderna. Domänskiftade landskapsbilder blev suddiga med CyCADA. FID värdet av domänskiftade bilder, ett utvärderingsmått som evaluerar fotorealism av bilder, blev lägre i jämförelse med endast simulerade bilder. Objektdetekteringsnätverket presterade bättre utan användning av CyCADA. Givet att CyCADA presterade bra i att transformera bilder av siffror från en domän till en annan finns det hopp om att ramverket kan prestera bra med landskapsbilder med fler försök i att ställa in hyperparameterar.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321214
Date January 2022
CreatorsJamal, Majd
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:674

Page generated in 0.0019 seconds