Canadians live in a society where the sun does not dictate the workday. Our lifestyles must shift to cater to the 24-hour demands of a fast paced global community. As a result our circadian rhythms are altered, leading to dysregulation of key physiological processes responsible for the maintenance of essential functions like energy homeostasis. Energy homeostasis is controlled by neuropeptide-expressing neurons within the hypothalamus. These neurons are affected by circulating hormone and nutrient levels in addition to their endogenous molecular clock machinery that controls cellular processes. Therefore, hypotheses were generated that non-SCN hypothalamic neurons express orexigenic neuropeptides in a rhythmic fashion without external influence from the SCN as a result of internal rhythmicity; and that elevated concentrations of palmitate, a ubiquitous saturated FFA common in a high fat diet, have direct influence on the mRNA levels of circadian clock components Bmal1, Clock, Per2, Rev-erbα and the potent orexigenic neuropeptides NPY, AgRP and ppGhrelin through mechanisms related to HAT, SIRT1 and AMPK. Using the mHypoE-44 neurons, a well characterized cell line that expresses the molecular clock and specific neuropeptides these hypotheses were explored in four studies.
Neuropeptide expression within the mHypoE-44 neurons was determined to be rhythmic. NPY and NT demonstrate significant 24-hour rhythms. CRH and ppGhrelin mRNA cycled significantly in an ultradian fashion, oscillating approximately every 18 h. AgRP mRNA did not show a significant rhythm. We identified rhythmic binding of BMAL1 to the NPY promoter, suggesting clock-mediated control of neuropeptide expression.
Bmal1 and Clock mRNA levels were elevated with palmitate, whereas Per2 and Rev-erbα mRNA showed significant decreases following palmitate treatment. Palmitate increased the acetylation of both BMAL1 and PER2 proteins. Alteration of AMPK activity altered the mRNA levels of all clock genes assayed and AMPK activation diminished the palmitate-induced changes in Bmal1 mRNA. Palmitate significantly elevated both NPY and ppGhrelin mRNA levels. Chemical modifiers that decrease acetylation altered these systems. AMPK activation reduced the palmitate-induced changes in NPY mRNA levels.
These findings demonstrate that non-SCN neurons have rhythmic neuropeptide transcript levels. This thesis elucidates a direct effect of palmitate on the molecular clock and neuropeptide expression at the level of the hypothalamic neuron; and these findings highlight a role for HAT/SIRT1 activation and AMPK in these important processes, which ultimately contribute to the understanding of circadian dysregulation and energy balance.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/32042 |
Date | 18 January 2012 |
Creators | Fick, Laura Jennifer |
Contributors | Belsham, Denise |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds