Return to search

Ca2+/Calmodulin-dependent Protein Kinase II Anchoring to L-type Ca2+ Channels by the Beta Subunits Enhances Regulatory Phosphorylation at Thr498

Calcium/calmodulin-dependent kinase II (CaMKII) facilitates L-type calcium channel (LTCC) activity physiologically, but may exacerbate LTCC-dependent pathophysiology. We previously showed that CaMKII forms stable complexes with voltage-gated calcium channel (VGCC) β1b or β2a subunits, but not with the β3 or β4 subunits (Grueter et al. 2008). CaMKII-dependent facilitation of CaV1.2 LTCCs requires Thr498 phosphorylation in the β2a subunit (Grueter et al. 2006), but the relationship of this modulation to CaMKII interactions with LTCC subunits is unknown. Here we show that CaMKII co-immunoprecipitates with forebrain LTCCs that contain CaV1.2α1 and β1 or β2 subunits, but is not detected in LTCC complexes containing β4 subunits. CaMKIIα can be specifically tethered to the I/II linker of CaV1.2 α1 subunits in vitro by the β1b or β2a subunits. Efficient targeting of CaMKIIα to the full-length CaV1.2α1 subunit in transfected HEK293 cells requires CaMKII binding to the β2a subunit. Moreover, disruption of CaMKII binding substantially reduced phosphorylation of β2a at Thr498 within the LTCC complex, without altering overall phosphorylation of CaV1.2α1 and β subunits. These findings demonstrate a biochemical mechanism underlying LTCC facilitation by CaMKII.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03112010-001429
Date07 April 2010
CreatorsAbiria, Sunday
ContributorsHassane Mchaourab, Roger J.Colbran, Louis J. DeFelice, Kevin P.M. Currie
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu//available/etd-03112010-001429/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0109 seconds