Return to search

Nuthin' but a G (protein) thang: Insights into the Mechanics of G protein Signaling from Sequence and Structure

G protein-coupled receptors (GPCRs) are a large and diverse group of transmembrane receptors which convert extracellular signals into intracellular responses via coupling to heterotrimeric G proteins. In order to integrate diverse extracellular signals into a message the cell can recognize and respond to, conformational changes occur that rewire the interactions between the receptor and heterotrimer in a specific and coordinated manner. By interrogating the structural and sequence-based constraints of these proteins across each of the signaling states, we can infer which residues are necessary for function and selectivity. Two opportunities emerged to construct predictive models for G protein interactions that invite the application of informatics: 1) With advances in genome sequencing, we can reconstruct and reconcile fully resolved phylogenetic histories of G alpha subunit subfamilies; 2) With experimental G protein structures in complex with protein partners, we can model interactions affiliated with signal mechanics. Here 1 and 2 were combined to create quantitative, predictive models of G protein signaling to identify conserved patterns and characteristics necessary for subfamily-specific protein-protein interactions that will ultimately aid in drug discovery. We were able to successfully model and predict a number of residues across the G protein structure acting as the underlying communication network necessary for function. We then turned to evaluate the sequence-based constraints which imping on subfamily-specific function and selectivity. By integrating sequence information, we were able to predict residue motifs necessary for G protein activation and signaling. Key positions from these predictions have been biochemically validated through mutational studies to verify requirements for G protein subfamily-specific interaction with activated GPCRs and to improve the in silico methodologies in an iterative fashion. Overall, our studies have resulted in new understanding of G protein activation, evolution, and
function. As GPCRs represent the targets of roughly half of all therapeutics, increasing our understanding of the intracellular transducing element and the system around these proteins is critical for continued improvement and development of therapeutics. As many diseases are the direct cause of erroneous G protein signaling, study of the mechanism of G protein evolution, activation and signaling remains paramount for the improvement of human health.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-06132017-085149
Date12 July 2017
CreatorsLokits, Alyssa Dawn
ContributorsHeidi Hamm, Vsevold Gurevich, Jens Meiler, Anthony Capra, Annette Beck-Sickinger
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-06132017-085149/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0072 seconds